Few-Shot Visual Relationship Co-Localization

<u>Revant Teotia</u> IIT Jodhpur

Vaibhav Mishra IIT Jodhpur

Mayank Maheshwari IIT Jodhpur

Anand Mishra IIT Jodhpur

Visual Relationship Co-localization

Visual Relationship = <Subject, Predicate, Object>

STEP 1 Forming VRC as a Labeling Problem

Forming VRC as a labelling problem

Given a bag of images:

Image-1

Image-2

Image-3

Image-4

Forming VRC as a labelling problem

Forming VRC as a labelling problem

Label set = all possible visual relationships:

STEP 2 Getting the label set for an image

Getting the label set for an image

Label set \mathcal{L}

Label set = all possible visual relationships in an image = all possible ordered pairs of detected visual objects in an image

STEP 3 Computing pairwise cost

VTransE + Relation Network to learn VR similarity

VTransE

[Zhang et al., CVPR 2017]

Figure 1: Relation Network architecture for a 5-way 1-shot problem with one query example.

Relation Network

[Sung et al., CVPR 2018]

12

 \mathcal{L}_{4}

Pairwise Cost = - VR Similarity

Pairwise cost

STEP 4 Episodic training

Episodic training

Episodic Training using Binary Log Regression Loss:

$$ext{Loss} = rac{1}{N} \left(\sum_{(l_i, l_j) \in pos} L_p + \sum_{(l_i, l_j) \in neg} L_n
ight)$$

where
$$L_p = \log \left(1 + e^{-R_{ heta}\left(f_{l_i}, f_{l_j}
ight)}
ight)$$
 and $L_n = \log \left(1 + e^{R_{ heta}\left(f_{l_i}, f_{l_j}
ight)}
ight)$

N : Total number of VR pairs created for a bag pos : pairs with the common hidden predicate neg : pairs with different predicate R_{Θ} : Similarity computed using Relation Net

Step 5 Inference stage

Image - 1

Image - 2

Image - 3

Image - 4 20

Latent visual relation: **Biting**

Latent visual relation: **Balancing On**

Latent visual relation: Following

Latent visual relation: **Sniffing**

- Visual Relationship Co-Localization: a novel task.
- A principled meta-learning based optimization framework
- Potential to open-up many future research avenues

Code Available!

Thank You

Getting the optimal labeling

Episodic training with binary logistic regression loss :

$$ext{For positive pairs: } L^p = rac{1}{N_p} \sum_{(f_u,f_v)} (\log(1+\exp(R_\Theta(f_u,f_v))) \qquad \quad L_p = \logigg(1+e^-)$$

Positive pairs = pair of labels / VRs sharing **common predica**^{\circ} For example : l_{22} = <woman, petting, sheep> and l_{43} = <man, petting, horse>

 $\sum_{(l-1,l) \in mag} L_p + (l$

 $L_n = \log \Big(1 + e^H \Big)$

Getting the optimal labeling

Episodic training with binary logistic regression loss :

$$ext{For negative pairs: } L^n = rac{1}{N_n} \sum_{(f_u,f_v)} (\log(1+\exp(R_\Theta(f_u,f_v))))$$

Negative pairs = pair of labels / VRs having **different predicate**. For example : l_{11} = <woman, wearing, hat> and l_{43} = <man, petting, horse>

Thank You

Any Questions?

Visual Relationship = <<mark>Subject, Predicate, Object</mark>>
Visual Relationship = <Subject, Predicate, Object>

Visual Relationship = <Subject, Predicate, Object>

Can you localize common visual relationships?

Visual Relationship Co-Localization : This work

Object Co-Localization and WSOL

Negative Bag

[Shaban et al., ICCV 2019]

[Hu et al., ICCV 2019]

$$\Psi = \sum_{u=1}^{b} \left(\min_{t} \Psi_u(l_{ut}) + \sum_{v=1}^{b, u \neq v} \min_{t_1, t_2} \Psi_{uv}(l_{ut_1}, l_{vt_2}, \theta) \right)$$

$$\Psi = \sum_{u=1}^{b} \left(\min_{t} \Psi_{u}(l_{ut}) + \sum_{v=1}^{b, u \neq v} \min_{t_{1}, t_{2}} \Psi_{uv}(l_{ut_{1}}, l_{vt_{2}}, \theta) \right)$$

Sum over all the b images

$$\Psi = \sum_{u=1}^{b} \left(\min_{t} \Psi_{u}(l_{ut}) + \sum_{v=1}^{b, u \neq v} \min_{t_{1}, t_{2}} \Psi_{uv}(l_{ut_{1}}, l_{vt_{2}}, \theta) \right)$$

Unary cost of assigning a label l_{ut} to image-u. Considered uniform, does not contribute

$$\Psi = \sum_{u=1}^{b} \left(\min_{t} \Psi_u(l_{ut}) + \sum_{v=1}^{b, u \neq v} \min_{t_1, t_2} \Psi_{uv}(l_{ut_1}, l_{vt_2}, \theta) \right)$$

Pairwise cost of assigning labels l_{ut1} to image u and l_{vt2} to image v.

Lower when predicates of l_{ut1} and l_{vt2} are **semantically similar**

Todo list and extra slides next

TODO list :

- 1. First 2 slides : 1 problem statement + related work + why is a few-shot way ... : [Mayank]
- 2. 3rd + 4th slide : How graph labeling using potential function
- 2 slides probably : How are labels sets created(almost done) + RelationNet to find similarity/cost (almost done)
- 4. Show how to train RelationNet in an episodic way : done : NEEDS MORE WORK
- 5. Inference algorithm : (almost done) finetune figure + how to explain :
- 6. Performance metrics : Mayank (can explain better)
- 7. Results (quantitative + visual results) : Mayank and Vaibhav

Speaker notes : use those

Keeping latex equation just in case

 $L^p = \frac{1 N_p (f_u, f_v)}{(\log(1 + \exp(-R_{m_u} f_v)))}$

Inference algorithm : dividing large bag into smaller ones --> solve smaller subproblems : combine smaller solutions

Problem Formulation : how a graph labelling problem : what is the cost function

Cost function

$$\Psi = \sum_{u=1}^{b} \left(\min_{t} \Psi_{u}(l_{ut}) + \sum_{v=1}^{b, u \neq v} \min_{t_{1}, t_{2}} \Psi_{uv}(l_{ut_{1}}, l_{vt_{2}}, \theta) \right)$$

Unary cost : $\Psi_u(l_{ut})$

Bag of 4 images with common latent predicate = "petting"

Optimal selection (O) = $(I_{1x}, I_{2x}, I_{3x}, I_{4x})$, where $I_{ix} \in \mathcal{L}_i$ s.t. And all selected labels / visual relationships have **same predicate**.

For this illustration : O = $(I_{12}, I_{22}, I_{31}, I_{43})$ and the common hidden predicate = "petting"

How are we localizing a VR in this work. : [need to show this but where]

Visual relationship (VR) = <subject - predicate - object> In this image : <woman - biting - apple>

In this work, to localize a VR we predict its :

subject bounding-box & object bounding-box

Problem Formulation : how a graph labelling problem : what is a label set for an image

Label set $\mathcal L$

Label set = all possible visual relationships in an image = all possible ordered pairs of detected visual objects in an image Problem Formulation : how a graph labelling problem : what are nodes, edges and labels

Each bag of image = fully connected graph

Images in bag = Graph vertices

Label set of image = All possible VR, or All possible subj-obj pairs

Objective = Select 1 label (VR) for each image s.t. the selected labels have same predicate

Bag of 4 images with common latent predicate = "petting"

Problem Formulation : how a graph labelling problem : what is the cost function

Optimization function: $\Psi = \sum_{u=1}^{b} \left(\min_{t} \Psi_u(l_{ut}) + \sum_{v=1}^{b, u \neq v} \min_{t_1, t_2} \Psi_{uv}(l_{ut_1}, l_{vt_2}, \theta) \right)$

Unary cost : $\Psi_u(l_{ut})$ Cost of assigning a label ${\rm I_u}$ to image u. Considered uniform

 $\begin{array}{ll} \mbox{Pairwise cost}: \ \Psi_{uv}(l_{ut_1},l_{vt_2},\theta) \\ \mbox{Cost of assigning labels } {\rm I}_{\rm ut1} \ \mbox{to image u and } {\rm I}_{\rm vt2} \ \mbox{to image v.} \\ \mbox{Lower when predicates of } {\rm I}_{\rm ut1} \ \mbox{and } {\rm I}_{\rm vt2} \ \mbox{are semantically similar} \end{array}$

Inference

Final prediction for whole bag

Where:

 N_p = number of pairs in an episode f_u , f_v = embeddings of visual relationship pairs and $u \neq v$ R_{Θ} = visual relationship similarity function Positive pairs: pairs sharing common predicate Negative pairs: pairs sharing different predicate

Quantitative Results

Method \rightarrow	Concat + Cosine			VtransE+ Cosine			Concat+ Rel. Net			Our Approach		
Supervision ↓	Bag Size			Bag Size			Bag Size			Bag Size		
	2	4	8	2	4	8	2	4	8	2	4	8
No supervision	72.16	70.86	76.85	73.34	74.20	82.56	75.61	74.02	76.38	78.99	76.12	84.07
Subject Fixed	76.82	78.66	81.27	80.37	83.12	83.58	81.07	82.88	84.60	83.90	88.25	86.67
Subject-Object in one image	77.03	80.20	79.42	83.33	82.40	84.07	79.29	81.69	81.45	87.44	84.46	86.95

Table 3. Effects of weak supervision on co-localization of relationships. Here, we observe that just by giving a weak form of supervision, the visual relationship co-localization performance increases significantly for each ablation. The results correspond to VR-CorLoc %.

1:petting

3:pointing

4:placed on

5:stacked on

7:drawn on

8:sewn on

9:sticking out of

10:at bottom of

12:entering

13:leaning on

14:in corner of

15: surrounded by

16:in center of

Episodic training with binary logistic regression loss

For positive pairs:
$$L^p = \frac{1}{N_p} \sum_{(f_u, f_v)} \left(log(1 + exp(-R_{\Theta}(f_u, f_v))) \right)$$

For negative pairs: $L^p = -$

$$\frac{1}{N_p} \sum_{(f_u, f_v)} \left(log(1 + exp(R_{\Theta}(f_u, f_v))) \right)$$

Where:

 N_p = number of pairs in an episode f_u , f_v = embeddings of visual relationship pairs and $u \neq v$ R_{Θ} = visual relationship similarity function Positive pairs: pairs sharing common predicate Negative pairs: pairs sharing different predicate

Supple slides

Metrics

Ground Truth Object Bounding Box Ground Truth Subject Bounding Box Predicted Object Bounding Box Predicted Subject Bounding Box

VR-CorLoc

Fraction of test images for which visual subject-object pairs are correctly localized.

Bag-CorLoc

Fraction of the total number of bags for which the visual subject-object pairs are correctly localized for all of its images.