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Visual Relationship Co-localization

4Visual Relationship = <Subject, Predicate, Object>



STEP 1
Forming VRC as a Labeling Problem

____________________________
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Given a bag of images:

Forming VRC as a labelling problem
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Construct a fully connected graph:
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Forming VRC as a labelling problem

7



Label set = all possible visual relationships:

Image-1

Image-2

Image-3

Image-4

Forming VRC as a labelling problem
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STEP 2
Getting the label set for an image

____________________________
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Given image

Faster 
R-CNN

Detected visual objects

Label set ℒ
Label set = all possible visual relationships in an image

        = all possible ordered pairs of detected visual objects in an image

subject object

…        … 

l2

l1

l3

Cross 

product

Getting the label set for an image 
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STEP 3
Computing pairwise cost
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VTransE + Relation Network to learn VR similarity

[Sung et al., CVPR 2018][ Zhang et al., CVPR 2017]
VTransE Relation Network

Computing pairwise cost
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Computing pairwise cost

13



ℒ1

l12

l11

l13

ℒ4

l42

l41

l43
VTransE

VTransE

f43

f12

Computing pairwise cost

14
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Pairwise Cost =  - VR Similarity

ℒ1

l12

l11

l13

ℒ4

l42

l41

l43
VTransE

VTransE

f43

f12

Relation 
Network

R𝞡(f43, f12)

Similarity Score b/w VR l43 and 
l12

Pairwise cost

Similar VRs → low pairwise cost
Dissimilar VRs → high pairwise cost

=  -R𝞡(f43, 
f12)

Computing pairwise cost
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STEP 4
Episodic training

____________________________
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Episodic training

18

where  

Episodic Training using Binary Log Regression Loss:

N : Total number of VR pairs created for a bag     
pos : pairs with the common hidden predicate
neg : pairs with different predicate
RΘ: Similarity computed using Relation Net

Loss =

and 



Step 5
Inference stage____________________________

Episodic 
training

Computing 
pairwise 
cost

Inference 
Stage

Forming 
VRC as a 
labelling 
problem

Getting 
the label 
set for an 

image
19



Inference Stage
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Potential labeling 
sorted according to 
cost

Inference Stage
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Inference Stage
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ɭ12
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Image - 1 Image - 2 Image - 3 Image - 4

Leaf 
nodes

Root node

Final prediction for whole bag

bestK bestK

Potential labeling 
sorted according 
to cost

Inference Stage

23



Quantitative Results
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Latent visual relation: Biting

Qualitative Results
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Qualitative Results

Latent visual relation: Balancing On
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Qualitative Results

Latent visual relation: Following
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Qualitative Results

Latent visual relation: Sniffing
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● Visual Relationship Co-Localization: a novel task.

● A principled meta-learning based optimization framework

● Potential to open-up many future research avenues 

Conclusion

Code Available! 
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Thank You
____________________________
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For positive pairs: 

Positive pairs = pair of labels / VRs sharing common predicate. 
For example : l22 = <woman, petting, sheep>  and 

   l43 = <man, petting, horse>

Episodic training with binary logistic regression loss :

Getting the optimal labeling

ℒ1 ℒ2 ℒ3 ℒ4

l12
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l42
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l43

Label sets of images in the bag
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ℒ1 ℒ2 ℒ3 ℒ4

l12

l11

l13

l22

l21

l23

l32

l31

l33

l42

l41

l43

Label sets of images in the bag

Negative pairs = pair of labels / VRs having different predicate.
For example : l11 = <woman, wearing, hat>  and 

      l43 = <man, petting, horse>

Getting the optimal labeling

Episodic training with binary logistic regression loss :

For negative pairs: 
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Any Questions?

Thank You
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Visual Relationship 
= <Subject, Predicate, Object>
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Visual Relationship 
= <Subject, Predicate, Object>
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Visual Relationship 
= <Subject, Predicate, Object>
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Can you localize common visual relationships?
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Visual Relationship Co-Localization : This work 
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Object Co-Localization and WSOL

[Shaban et al., ICCV 2019] [Hu et al., ICCV 2019]
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Sum over all the b images
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Unary cost of assigning a label      to image-   .
Considered uniform, does not contribute 
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Pairwise cost of assigning labels 
lut1 to image u and lvt2 to image v.

Lower when predicates of lut1 and 
lvt2 are semantically similar 45
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Todo list and extra slides next
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TODO list : 

1. First 2 slides : 1 problem statement + related work + why is a few-shot way … : [Mayank]
2. 3rd + 4th slide : How graph labeling using potential function 
3. 2 slides probably : How are labels sets created(almost done) + RelationNet to find similarity/cost (almost 

done)
4. Show how to train RelationNet in an episodic way : done : NEEDS MORE WORK
5. Inference algorithm : (almost done) finetune figure + how to explain : 
6. Performance metrics : Mayank (can explain better) 
7. Results (quantitative + visual results) : Mayank and Vaibhav

Speaker notes : use those 

Keeping latex equation just in case

L^p = \frac 1 N_p \Sigma_{(f_u, f_v)} (log(1+ exp( - R_\Theta (f_u, f_v))))
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Inference algorithm : dividing large bag into smaller ones
--> solve smaller subproblems : combine smaller solutions

l12

l11

l13

l22

l21

l23

l32

l31

l33

l42

l41

l43

K-best : (l12, l22), (l11, l23), (l13, 
l21)

K-best : (l31, l43), (l33, l43), (l32, 
l42)

K-best : (l12, l22, l31, l43), (l12, l22, l31, l43), (l12, l22, l31, 
l43)
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Bag of 4 images with common latent predicate = “petting”

Problem Formulation : how a graph labelling problem : what is the cost function

Cost function

Unary cost : 



ℒ1 ℒ2 ℒ3 ℒ4

l12

l11

l13

Optimal selection (O) = ( l1x, l2x, l3x, l4x ),  where lix ∈ ℒi s.t. And all selected labels / visual relationships 
have same predicate.

For this illustration : O = ( l12, l22, l31, l43 ) and the common hidden predicate = “petting”

l22

l21

l23

l32

l31

l33

l42

l41

l43

 <woman, petting, sheep>       <woman, petting, sheep>   <man, petting, dog>          <man, petting, horse>
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Visual relationship (VR) = <subject - predicate - object>

In this image :  <woman - biting - apple>

In this work, to localize a VR we predict its :

subject bounding-box  & object bounding-box

How are we localizing a VR in this work. : [need to show this but where]



Problem Formulation : how a graph labelling problem : what is a label set for an image

Given image

Faster 
R-CNN

Detected visual objects

Label set ℒ
Label set = all possible visual relationships in an image

      = all possible ordered pairs of detected visual objects in an image

subject object

…        … 

l2

l1

l3
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Bag of 4 images with common latent predicate = “petting”

Problem Formulation : how a graph labelling problem : what are nodes, edges and labels

Each bag of image = 
fully connected graph

Images in bag = 
Graph vertices

Label set of image =
All possible VR, or 
All possible subj-obj pairs

Objective =
Select 1 label (VR) for each 

image s.t. the selected labels have 
same predicate 



Problem Formulation : how a graph labelling problem : what is the cost function

Optimization function : 

Unary cost : 
Cost of assigning a label lu to image u.
Considered uniform

ℒ1 ℒ2 ℒ3 ℒ4

l12

l11

l13

l22

l21

l23

l32

l31

l33

l42

l41

l43

Pairwise cost : 
Cost of assigning labels lut1 to image u and lvt2 to 
image v.
Lower when predicates of lut1 and lvt2 are 
semantically similar
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Where:
Np = number of pairs in an episode
fu, fv = embeddings of visual relationship pairs and u ≠ v
R𝚹 = visual relationship similarity function
Positive pairs: pairs sharing common predicate
Negative pairs: pairs sharing different predicate 



Quantitative Results
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1:petting
59



3:pointing
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4:placed on
61



5:stacked on
62



7:drawn on
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8:sewn on
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9:sticking out of 
65



10:at bottom of 
66



12:entering
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13:leaning on
68



14:in corner of 69



15: surrounded by 
70



16:in center of
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ℒ1 ℒ2 ℒ3 ℒ4

l12

l11

l13

l22

l21

l23

l32

l31

l33

l42

l41

l43

For positive pairs: 

For negative pairs: 

Label sets of images in the bag

Episodic training with binary logistic regression loss

Where:
Np = number of pairs in an episode
fu, fv = embeddings of visual relationship pairs and u ≠ v
R𝚹 = visual relationship similarity function
Positive pairs: pairs sharing common predicate
Negative pairs: pairs sharing different predicate 
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Supple slides
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Fraction of test images for 
which visual subject-object 
pairs are correctly localized. 

Fraction of the total number of bags for 
which the visual subject-object pairs are 
correctly localized for all of its images. 

VR-CorLoc Bag-CorLoc

Metrics
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