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ABSTRACT
In this paper, we study the problem of identifying logos of busi-
ness brands in natural scenes in an open-set one-shot setting. This
problem setup is significantly more challenging than traditionally-
studied ‘closed-set’ and ‘large-scale training samples per category’
logo recognition settings. We propose a novel multi-view textual-
visual encoding framework that encodes text appearing in the logos
as well as the graphical design of the logos to learn robust con-
trastive representations. These representations are jointly learned
for multiple views of logos over a batch and thereby they general-
ize well to unseen logos. We evaluate our proposed framework for
cropped logo verification, cropped logo identification, and end-to-
end logo identification in natural scene tasks; and compare it against
state-of-the-art methods. Further, the literature lacks a ‘very-large-
scale’ collection of reference logo images that can facilitate the
study of one-hundred thousand-scale logo identification. To fill this
gap in the literature, we introduceWikidata Reference Logo Dataset
(WiRLD), containing logos for 100K business brands harvested from
Wikidata. Our proposed framework that achieves an area under
the ROC curve of 91.3% on the QMUL-OpenLogo dataset for the
verification task, outperforms state-of-the-art methods by 9.1% and
2.6% on the one-shot logo identification task on the Toplogos-10
and the FlickrLogos32 datasets, respectively. Further, we show that
our method is more stable compared to other baselines even when
the number of candidate logos is on a 100K scale.
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• Computing methodologies→ Image representations.
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Figure 1: Our Goal: given a natural scene and a gallery of
“one” reference logo each for 𝐾 “unseen” business brands,
our goal is to identify the correct logo. We present a novel
contrastive multi-view textual-visual encoding to address
this problem. Further, for the first time in the literature, we
study the problem of logo identification in an extremely
challenging scenario when the number of candidate logos,
i.e. 𝐾 is as large as 100K.

December 8–10, 2022, Gandhinagar, India, Soma Biswas, Shanmuganathan
Raman, and Amit K Roy-Chowdhury (Eds.). ACM, New York, NY, USA,
Article 25, 9 pages. https://doi.org/10.1145/3571600.3571625

1 INTRODUCTION
We study the problem of logo recognition in a practical setting
where “only one” reference logo each for 𝐾 “unseen” business
brands is available during inference, and the task is to detect the
logo in a natural scene and identify it as one of the𝐾 potential logos.
We refer to this problem as Open-set One-shot Logo Identification
in the Wild and illustrate it in Figure 1. The success of this chal-
lenging task can lead to many downstream real-world applications,
including comprehensive scene understanding, and image search.

Open-set One-shot Logo Identification in the Wild is a challenging
task (especially when 𝐾 is of one-hundred-thousand scale) and re-
quires a model to learn robust and discriminative encoding of logos
that can generalize well even to unseen business brands. Inspired by
the seminal works in contrastive multi-view encoding [6, 9, 22, 36],
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we present a supervised contrastive learning framework. Our frame-
work encodes textual1 as well as visual features associated with
the graphical design of logos and learns a fused robust representa-
tion using our novel supervised contrastive loss formulation. Our
framework requires a set of cropped logos during training. During
inference, our model, by virtue of these learned representations, is
able to compare unseen logos reasonably well even with an off-the-
shelf method for detecting logos and naïve cosine similarity. Our
framework differs from popular contrastive loss-based methods,
e.g., pairwise [25] and triplet loss [13] as it jointly optimizes the
loss in a batch and learns a discriminative representation.

Furthermore, there does not exist a dataset to study very large-
scale logo identification in the literature. To fill this gap, we in-
troduce Wikidata Reference Logo Dataset or WiRLD in short – a
very-large-scale logo dataset containing reference logos for 100K
business brands. We curate this dataset from an open-source knowl-
edge base, namely Wikidata [40] and use this curated set as a refer-
ence dataset in our very-large-scale logo identification experiment.
This collection can augment other datasets in the literature for
performing large-scale logo identification experiments.

We perform rigorous experiments to evaluate our proposed
model in three different settings: (i) cropped logo verification, (ii)
cropped logo identification, (iii) end-to-end logo detection and
identification, and evaluate the performance of various relevant
methods including ours over four public datasets, namely QMUL-
OpenLogo [35], FlickrLogos-47 [30], FlickrLogos-32 [21] and TopL-
ogos [34]. Further, in order to perform truly very-large-scale logo
identification, we use QMUL-OpenLogo dataset [35] as probe and
our newly introduced dataset viz. WiRLD as a reference set. Our
method achieves area under the ROC curve of 91.3% on the QMUL-
OpenLogo dataset on cropped logo verification task. Further, our
proposed framework outperforms state-of-the-art methods by 9.1%
and 2.6% on the task of unseen cropped logo identification over
TopLogos [34] and Flickr32 [21] datasets, respectively.
Contributions: To summarize, our contributions are three folds, (i)
We present a contrastive multi-view encoding of visual-textual fea-
tures by fusing textual, i.e., text associated with logos and visual, i.e.,
graphical design of logos and learn more robust and generalizable
features. Our proposed contrastive multi-view encoding compels
the samples from the same class and their augmented views closer
and the samples from different classes and their augmented views
farther in the semantic space. (ii) For the first time in the literature,
we study the problem of logo identification in an extremely chal-
lenging scenario where the number of candidate logos is as large
as 100K. In order to facilitate this study, we introduce a very-large-
scale logo dataset, Wikipedia Reference Logo Dataset containing
100K reference logos. (iii) Our method achieves state-of-the-art
results on the task of one-shot logo identification for unseen logos
on four public logo datasets. Further, we also show the robustness
of our approach for logo identification in a very-large-scale setting.
We make our code and dataset available at our project website:
https://vl2g.github.io/projects/logoIdent/.

1Often business brand names are part of logos, our method leverages this fact while
learning representation.

Figure 2: Our proposed contrastive multi-view textual-visual
encoding (E) (refer Section 3 for more detail) projects logos in
a subspace where multiple views of samples from the same
and different business brands become closer and farther, re-
spectively. We achieve this jointly for a batch using (2).

2 RELATEDWORKS
2.1 Logo Recognition
The majority of the successful logo recognition approaches, in-
cluding traditional [20, 21] as well as recent neural methods [2–
5, 14, 17, 29] pose the problem as a closed-set recognition problem,
where all business brands are seen during training, and a large
number of logos per business brand are available. This is not a
practical setting for real-world scenarios. Open-set logo recogni-
tion methods [8, 27] have been proposed to have a closer to a
real-world setting but often relaxing one-shot assumptions. On
one-shot logo recognition, recently [38] reported the performance
of the Siamese network. We experimentally compare against this
approach and outperform it by a large margin. Slightly advanced
one-shot learning methods like Variational Prototypical Encoder
(VPE) [24] leverage prototype images by learning a mapping from
real-world images to prototype images; representations learnt via
this mapping aid the one-shot performance of the model. However,
the following work, VPE++ [43] has shown that embeddings learnt
by VPE suffer from the hubness problem and hence extended the
VPE framework by proposing a multi-task loss formulation that
reduces hubness. VPE++ method treats contrastive loss and classifi-
cation loss as isolated losses as part of the multi-task loss. Through
this work, we provide a supervised contrastive learning framework
that jointly leverages classification and contrastive objectives. Our
results show that our framework learns more generalizable rep-
resentations, which are key for open-set one-shot identification
tasks.

2.2 Logo Datasets
Many logo datasets have been proposed for various tasks, includ-
ing logo detection and classification. The majority of the existing
datasets [14–16, 21, 28, 30, 35, 37] have very limited coverage of logo
classes, making them unsuitable for large-scale logo identification
settings. Few works [8, 27, 33, 41, 42] have proposed logo datasets
with more logo classes. However, unfortunately, only some of them
are publicly available. Such limitations restrict existing models
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and benchmarks from exploring practical settings like very-large-
scale logo identification tasks. To overcome such limitations and
facilitate models to evaluate over the task of very-large-scale logo
identification, we introduce a very-large-scale logo dataset, namely
Wikipedia Reference LogoDataset curated from open-source knowl-
edge base Wikidata [40], containing 100K reference logos.

2.3 Contrastive Learning
Pairwise contrastive learning has been widely leveraged to learn
generalizable features using Siamese networks [7, 11]. Triplet loss
uses triplets instead of pairs [13], where each triplet consists of an
anchor, positive and negative samples, and the goal is to make the
anchor closer to the positive sample and farther to the negative
sample. However, the performance of these methods depends on the
quality of pairs or triplets [38]. Contrastive learning has beenwidely
leveraged in the space of self-supervised representation learning
approaches [18]. These methods rely on batch-wise losses [10, 32]
and their variants, where they do not sample negatives in isolation;
instead, they use other batch samples as negatives. Authors in [22]
have extended contrastive learning to leverage class labels in loss
formulation. In line with this research space, we present contrastive
multi-view textual-visual encoding for robust and generalizable
representation of logos.

3 PROPOSED APPROACH
3.1 Task Formulation
In this work, we address open-set one-shot logo identification in the
following problem setup – during training, images of cropped logos
from a set of business brands (𝐵𝑟𝑎𝑛𝑑𝑡𝑟𝑎𝑖𝑛) are available. However,
during inference, given a natural scene and a set of 𝐾 business
brands (𝐵𝑟𝑎𝑛𝑑𝑡𝑒𝑠𝑡 ) with one reference logo for each brand, our goal
is to localize and identify the logo in the scene. Here, it should be
noted that 𝐵𝑟𝑎𝑛𝑑𝑡𝑟𝑎𝑖𝑛 ∩𝐵𝑟𝑎𝑛𝑑𝑡𝑒𝑠𝑡 = 𝜙 in our setup. In other words,
we aim to identify unseen business brands during the inference.
Learning discriminative and robust encoding for logos is required
to address this task. To this end, we propose a contrastive multi-view
textual-visual encoding for addressing the problem.

3.2 Contrastive Multi-View Textual-Visual
Encoding

3.2.1 Image representation. For a given batch of 𝑛 logos I =
{𝐼1, 𝐼2, · · · , 𝐼𝑛} (where each 𝐼 𝑖 ∈ R3×𝐻×𝑊 ) sampled from a dataset,
we begin by obtaining two distorted views of each image using
a set data augmentations A adopted from [44]. The augmented
views thus obtained, I𝑎 and I𝑏 for each image in a batch are fed to
the visual encoder 𝑓𝜃 and the textual encoder 𝑔 simultaneously. It
should be noted that logos are often composed of graphical design
and text, and the encoders 𝑓𝜃 and 𝑔 are designed to capture and
encode these attributes of logos2. For encoding the visual features
of the logo, any visual encoder can be used in our framework. We
use ResNet50 [12] as our visual encoder to obtain 2048-dimensional
features representing the graphical design of logos. These features
V𝑎 and V𝑏 , with V{𝑎,𝑏} ∈ R𝑛×2048, are obtained from both the
views of logo I𝑎 and I𝑏 respectively.

2If no text is detected in the logo, 𝑔 outputs a zero vector.

Table 1: Notation used in the paper.

Symbol Meaning

𝑓𝜃 Visual Encoder
𝑔 Textual Encoder
ℎ𝜙 Projection MLP
I{𝑎,𝑏} Augmented views of a batch
V{𝑎,𝑏} Visual Features
T{𝑎,𝑏} Textual Features
Z{𝑎,𝑏} Projected final representation

3.2.2 Text representation. Any state-of-the-art scene text recog-
nizer can be used to encode the textual features. We use the im-
plementation from [1] based on the CRNN [31] model (referred
to as OCR-net in our framework). OCR-net has a traditional con-
volutional neural network to encode the image, followed by an
LSTM module to decode the OCR-text character by character. We
use the last hidden-state representation of the LSTM module as
textual embedding. We refer to this module as our textual encoder
𝑔. We obtain the 256-dimensional textual feature vectors T𝑎 and
T𝑏 for both the views of logo I𝑎 and I𝑏 , respectively. Note that the
weights of our textual encoder are frozen.

3.2.3 Contrastive formulation and training objective. Visual fea-
tures V𝑎 and V𝑏 are then concatenated with textual features T𝑎
and T𝑏 respectively before being projected to a 512-dimensional
space using an MLP ℎ𝜙 . The output embeddings are normalized
to obtain final logo representations Z𝑎 and Z𝑏 , respectively, with
Z{𝑎,𝑏} ∈ R𝑛×512, such that | |𝑣 | |2= 1 where v is any row vector in
matrix Z𝑎 and Z𝑏 . Parameters 𝜃 and 𝜙 are learnable. It should be
noted here that each row of matrix Z𝑎 and Z𝑏 denote normalized
feature vector corresponding to one image in a batch. An overview
of our proposed framework is illustrated in Figure 3(a). (Notations
used in our method are summarized in Table 1.

Once we obtain Z𝑎 and Z𝑏 , we formulate our contrastive loss
function based on the intuition that the embeddings of the logos of
the same brands acrossZ𝑎 andZ𝑏 should lie closer in the embedding
space, while the embeddings of the logos of different categories
should lie farther apart. Our objective is illustrated in Figure 2.
Formally, we define our loss function as follows:

(1)L𝑐𝑜𝑛(Z𝑎,Z𝑏 ) = 𝑙 (Z𝑎,Z𝑏 ) + 𝑙 (Z𝑏 ,Z𝑎)
+ 𝑙(Z𝑎,Z𝑎) + 𝑙(Z𝑏 ,Z𝑏 ),

where

𝑙 (Z𝑢 ,Z𝑣 ) = −
𝑖=𝑛∑︁
𝑖=1

∑︁
𝑝∈𝑃 (𝑖)

log
𝑒𝑥𝑝(z𝑢

𝑖
.z𝑣𝑝/𝜏)

𝑗=𝑛∑
𝑗=1

𝑗 /∈𝑃 (𝑖) 𝑒𝑥𝑝(z𝑢𝑖 .z
𝑣
𝑗
/𝜏)

. (2)

Here, 𝑖 is an anchor in Z𝑢 , 𝑃 (𝑖) is the set of all the positive logo
indices corresponding to the anchor in the Z𝑣 matrix. z𝑢

𝑖
is the

𝑖𝑡ℎ row in Zu, similarly, z𝑣
𝑖
is the 𝑖𝑡ℎ row in Z𝑣 . Parameter 𝜏 is

empirically chosen as 0.07 for all our experiments.
Unlike other recently proposed supervised contrastive loss [22],

for a given anchor, our loss formulation does not try to maximize
the similarity scores for all the positive pairs over “all the possible”
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(a) Training
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(b) End-to-End Inference
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Figure 3: (a) Overview of our proposed framework. We obtain two-views I𝑎 and I𝑏 of the input logo images for a batch 𝐼 using
a set of data augmentations [44]. For both-view batches 𝐼𝑎 and 𝐼𝑏 , we obtain: textual embedding (T𝑎 , T𝑏 ) obtained from 𝑔(I𝑖 ),
∀ 𝑖 ∈ {𝑎, 𝑏}, respectively; 𝑔 is last hidden-state vector of LSTM module of off-the-shelf OCR-Net [1], and visual embeddings (V𝑎 ,
V𝑏 ) obtained from 𝑓𝜃 (𝐼𝑖 ), ∀ 𝑖 ∈ {𝑎, 𝑏}, respectively; 𝑓𝜃 is visual backbone [12]. We concatenate (V𝑎 : T𝑎), (V𝑏 : T𝑏 ) and project using
an MLP ℎ𝜙 to obtain Z𝑎 and Z𝑏 respectively. The encoder is trained using the proposed supervised contrastive loss formulation.
(b) illustrates the inference setup of our framework. Please refer to Section 3 for more details. [Best viewed in color].

pairs in the batch. Instead, we maximize the cosine similarity of all
the positive pairs over all the negative pairs only. This ensures that
multiple positive pairs do not compete against each other to achieve
a higher similarity score, thereby resulting in robust representations
for logos, which is desirable for our task. Further, our proposed
method is not only trained to learn the alignment between positive
pairs in a batch but also learn to align different views of positive
pairs; and similarly learns to push the embeddings of negative pairs
as well as different views of negative pairs, farther from the positive
pairs in the representation embedding space.

3.3 Inference
For end-to-end inference, given a natural scene, we detect logos
using YOLOv5s [19], which is independently fine-tuned on the
training set of QMUL-OpenLogo for the task of class-agnostic
logo detection. Detected candidate logo bounding boxes are en-
coded using our “trained” contrastive multi-view textual-visual en-
coder that concatenates 2048-dimensional visual embedding from
𝑓𝜃 with 256-dimensional textual embedding from 𝑔 to obtain b to
obtain a 2348-dimensional fused embedding. Reference logos for
𝐾 business brands (one reference logo per brand) are encoded in
a similar fashion to obtain their corresponding fused embeddings
{a1, a2, · · · , a𝐾 }, with a{1,· · ·,𝐾 } ∈ R1×2348. We rank the ‘K’ refer-
ence logos based on the cosine similarity between a𝑖 and b for
𝑖 = {1, 2, · · · , 𝐾} and take the most similar (= higher cosine similar-
ity) as the identified logo. An overview of our inference setting is
illustrated in Figure 3(b).

3.4 Training and Implementation details
We use ResNet50 [12] initialized with ImageNet pre-trained weights
and frozen off-the-shelf OCR-Net [1], and LSTM embeddings of the
detected OCR-Text as our visual and textual backbones, respectively.
We train our encoder with the proposed supervised contrastive loss
framework using the SGD algorithm with a momentum of 0.9 and
a learning rate of 1𝑒 − 4. We train all of our models on Nvidia
GTX 1080 Ti GPU. During end-to-end inference, we utilize a class-
agnostic YOLOv5s [19] detector fine-tuned on our training split
of the QMUL-OpenLogo dataset [35] to detect logos from natural
scene images. Additionally, we utilize a synthetic logo from each
class in our formulation to have a better intra-class alignment
during the experimental setting of [43]. We make implementation
of this work available at our project website: https://vl2g.github.io/
projects/logoIdent/.

4 EXPERIMENTS AND RESULTS
In this section, we first discuss existing datasets that we use as part
of our experimental settings in Section 4.1 and then we present
our curated dataset, namely Wikipedia Reference Logo Dataset
in Section 4.1.5. We discuss baselines and ablations in Section 4.2
and Section 4.3, respectively. Further, we briefly explain various
evaluation settings; and discuss the quantitative and qualitative
results in Section 4.4 and Section 4.5, respectively.

https://vl2g.github.io/projects/logoIdent/
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Figure 4: ROC curves for cropped logo verification task on
the QMUL-OpenLogo dataset [35]. The legends show the area
under the ROC metric corresponding to each method.

Table 2: Comparison of our newly introduced dataset,
Wikipedia Reference Logo Dataset with the other related
logo datasets. Our introduced dataset provides a very-large-
scale reference set for one-shot logo identification. (∗-not
publicly available)

Dataset #logo classes #images

FlickrLogos-27 [21] 27 1K
FlickrLogos-32 [21] 32 8.2K
BelgaLogos [28] 37 10K
FlickrLogos-47 [21] 47 8.2K
LOGO-Net [15] 160 73.4K
TopLogo-10 [34] 10 0.7K
Logo-405 [16] 405 32.2K
Logos in the wild [37] 871 11K
QMUL-OpenLogos [35] 300 27K
WebLogo-2M [33] 194 1.8M
PL2K∗ [8] 2K 295K
Logo-2K+ [42] 2.3K 167K
LogoDet-3K [41] 3K 158K
PL8K∗ [27] 8K 3M
WiRLD (This work) 100K 100K

4.1 Datasets
4.1.1 QMUL-OpenLogo Dataset [35]. This dataset has 27K cu-
rated images of 336 business brands. We follow the same split as
authors of [38], where logos from 211 business brands are used
for training and fine-tuning, and one logo each from 125 business
brands is used for testing. Note that train and test classes are dis-
joint.

4.1.2 FlickrLogos-47 [30]. It contains 2,235 annotated scenic im-
ages with logo regions spanning across 47 logo classes (32 symbolic
logos and 15 textual logos). We randomly pick 30 business brands

Table 3: Comparison of cropped logo identification results on
Flickr32 [21] and TopLogos-10 [34] datasets, respectively. We
report Top-1 accuracy for both seen and unseen logo classes.
Baseline results for methods QuadNet [23], MatchNet [39],
VPE [24] and VPE++ [43] are taken directly from [43].

Belga [28] −→ Flickr-32 [30] Belga [28] −→ Toplogos [34]

Method All
(Top-1)

Unseen
(Top-1)

All
(Top-1)

Unseen
(Top-1)

VAE 27.17 27.31 23.30 18.59
Siamese Network [25] 24.7 22.82 30.84 30.46
Pretrained ResNet [12] 43.21 44.68 38.35 46.56
LitW [37] 33.96 26.34 57.21 51.10
QuadNet [23] 31.68 28.55 38.89 34.16
MatchNet [39] 38.54 35.28 28.46 27.46
VPE [24] 56.6 53.53 58.65 57.75
VPE++ [43] 65.54 62.56 65.57 70.27
SupCon [22] 65.84 64.84 66.06 70.22
Ours - Vision 66.42 64.92 72.05 72.49
Ours - Vision + Text 66.77 65.17 72.26 79.33

out of 47 for training and 17 unseen brands for testing purposes.
We leverage the existing bounding box annotation for this dataset
and thus obtain 1936 cropped logo images as part of the train set
and 4032 as the test set.

4.1.3 BelgaLogos [28]. This dataset contains 10K logo images
spanning over 26 logo classes. Following the setting in [24], we use
this dataset to train our model with our proposed framework.

4.1.4 Toplogos [34]. This dataset consists of 700 logo images
over ten logo classes. Following the setting in [24], we use this
dataset as a test dataset for our cropped logo verification task for a
fair comparison with the baselines.

4.1.5 Wikipedia Reference Logo Dataset (WiRLD), (newly in-
troduced in our work). Many datasets have been proposed in the
research space of logo detection, and recognition [8, 14–16, 21, 27,
28, 30, 33, 35, 37, 41, 42]; however, unfortunately, the majority of
these datasets have very limited coverage of logo classes or not pub-
licly available; making them unsuitable for the tasks that demand a
very-large-scale logo dataset, e.g. large-scale logo identification. (An
overview comparing the various logo datasets is shown in Table 2).
To overcome shortcomings of existing datasets and to facilitate
models to explore the task of very-large-scale logo identification,
we curate large-scale logos from an open-source knowledge base,
namely Wikidata [40]. We follow a three-stage process to extract
logos from Wikidata. In stage-1, we obtain all the entities over
Wikidata with a logo with the help of the Wikidata SPARQL3 query
service. Once all entities are obtained, in stage-2, we parse the
one-hop neighbourhood for each entity over the Wikidata graph
and obtain logo URLs. Finally, in stage-3, we download original
logo images from these URLs. We use this curated set of reference
logo gallery for our task viz. large-scale open-set one-shot logo
identification. Our curated dataset has 100K reference logo images
spanning over 100K logo classes (One logo image for every entity).
The URLs of logo images of WiRLD are available for download in
our project website4.
3https://query.wikidata.org/
4https://vl2g.github.io/projects/logoIdent/

https://query.wikidata.org/
https://vl2g.github.io/projects/logoIdent/
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Figure 5: A selection of logos from our newly introduced Wikipedia Reference Logo Dataset. In total, our dataset has around
100K logo classes, with each class having one reference logo. Note that these logos are noise-free and clean as they are sourced
directly from Wikidata. Hence, it has great utility as a reference gallery set, especially for a task like very-large-scale one-shot
logo identification.

Table 4: Comparison of cropped logo identification results on
both QMUL-OpenLogo [35] and FlickrLogos-47 [30] datasets.
We report Top-𝑘 (𝑘 = 1, 5 and 10) accuracy (in %).

QMUL-OpenLogo [35] FlickrLogos-47 [30]

Method Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Levenshtein Distance 30.8 34.1 34.1 17.6 17.6 29.4
Siamese Network [38] 23.3 49.2 61.7 41.2 94.1 94.1
Pretrained ResNet [12] 30 48.3 59.2 29.4 82.4 88.2
LitW [37] 27.5 54.2 68.3 17.6 76.5 100
SupCon [22] 44.2 62.5 70.8 76.5 88.2 100
Ours - Vision 48.3 63.3 70 76.5 94.1 94.1
Ours - Vision + Text 55.7 68.3 73.3 82.4 94.1 94.1

4.2 Baselines
We choose various state-of-the-art methods as baselines that are
closely related to our problem setup. We group baselines into two
categories, namely (i) single-stream methods and (ii) contrastive-
loss based approaches. Under single stream networks, we use a
pretrained ResNet [12] model and a method mentioned in LitW [37].
Under contrastive-loss based approaches, we use the two approaches
Siamese network-based approach [38] and the recently proposed
supervised contrastive loss-based approach [22]. Additionally, we
consider recent works, namely VPE++ [43], VPE [24], matching
network [39], quadruplet networks [23] and variational autoen-
coder as our baselines. For fair comparison against these additional
baselines, we follow a similar experimental setup as [43].

Table 5: Comparison of end-to-end logo identification re-
sults on both QMUL-OpenLogo [35] and FlickrLogos-47 [30]
datasets. We report Top-𝑘 (𝑘 = 1, 5 and 10) accuracy (in %).

QMUL-OpenLogo [35] FlickrLogos-47 [30]

Method Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Levenshtein Distance 16.6 19.2 22.5 0 5.9 17.6
Siamese Network [38] 12.9 25.9 39.7 43.8 81.2 87.5
Pretrained ResNet [12] 16.4 28.4 39.7 43.8 87.5 93.8
LitW [37] 17.2 33.6 43.1 43.8 81.2 87.5
SupCon [22] 23.3 30.2 37.9 62.5 81.2 93.8
Ours - Vision 24.1 32.8 41.4 56.2 87.5 93.8
Ours - Vision + Text 26.7 39.7 48.3 56.2 81.2 93.8

4.3 Ablations
We perform the following ablations, (i) our method’s performance
on seen classes: to benchmark and contrast the performance of
our proposed framework over seen vs unseen logo classes, (ii)
our method (without Text): to estimate the importance of textual
pipeline, (iii) our method using different visual backbones: to esti-
mate the role and importance of visual backbone. Further, to illus-
trate the performance of a method that only ranks the logos based
on the recognized text and does not use visual cues, we also show
results using Levenshtein distance between text detected from the
logo and the reference logo crops.

4.4 Quantitative Results
We quantitatively evaluate our proposed framework in four exper-
imental settings and compare it with various related approaches.
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Query Logo Ours (Vis Only) Ours (Vis +Text)

Figure 6: A selection of test logos detected from the natural scene as queries. Each row has a query (on the left), and top-4
most similar logos obtained using Ours (Vision only) and Ours (Vision+Text) models on the cropped logo identification on the
QMUL-OpenLogo. Logos with a green bounding box represent the correct match. These results show that our framework is
able to learn robust representations leveraging both textual and visual cues from logos. [Best viewed in color].

Note that the test set’s classes (business brands) in all evaluation
settings are unseen during training.

4.4.1 Cropped logo verification. In this setting, a pair of cropped
logos (from 20,000 logo image pairs [35]) are compared against each
other for a match. We present the ROC curve comparison of our
framework with the baselines in Figure 4 on the QMUL-OpenLogo
dataset. Our framework outperforms the previous state-of-the-art
model by achieving an area under the ROC curve of 91.2% on the
QMUL-OpenLogo dataset.

4.4.2 Cropped logo identification. In this task, we follow two
settings: (i) Similar to [24, 43] where a noise-free clean logo is
matched over a set of cropped logos from natural scene images. We
follow the same training and evaluation protocols, and we train
our proposed framework on Belgalogo [28] dataset and evaluate
over Flickr32 [21] and TopLogos-10 [34] datasets, respectively, and
baseline results are taken directly from [24, 43] for this setting;
We present accuracy of seen vs unseen classes in Table 3. Our
framework outperforms the baselines on both seen and unseen
categories. We have not included these baselines in further evalua-
tion settings due to different training paradigms. (ii) Challenging
setting where a noisy cropped logo is compared against ‘one’ refer-
ence logo of 𝐾 business brands (where 𝐾 can be potentially large,
and reference logos can be noisy as well). The reference logos are
ranked based on similarity with the cropped logo. We compare Top-
𝑘 (𝑘 = 1, 5 and 10) accuracy of our framework with the baselines
in Table 4 on both QMUL-OpenLogo and FlickrLogos-47 datasets.
On the QMUL-OpenLogo dataset, our vision-only encoder trained
with the proposed loss framework has outperformed the baselines,
indicating the robustness of the proposed loss formulation.

4.4.3 End-to-end logo detection and identification. This is
the practical setting where we do not assume that cropped logos are
provided to us. Instead, we first detect the logo and then compare
it against reference logos. We compare Top-𝑘 (𝑘 = 1, 5 and 10)
accuracy of our framework with the baselines in this setting as
shown in Table 5 on both QMUL-OpenLogo and FlickrLogos-47

Table 6: Logo identification results with our method over vi-
sion backbones, on QMUL-OpenLogo dataset [35]. We report
Top-𝑘 (𝑘 = 1, 5 and 10) accuracy (in %).

QMUL-OpenLogo [35]

Method Vision backbone Top-1 Top-5 Top-10

Ours - Vision AlexNet [26] 33.3 54.2 64.2
Ours - Vision + Text AlexNet [26] 35.0 52.5 66.7
Ours - Vision ResNet [12] 48.3 63.3 70.0
Ours - Vision + Text ResNet [12] 55.8 68.3 73.3

datasets. On FlickrLogs-47, our method Top-1 accuracy is slightly
inferior to one of the recent approaches. However, our Top-5 and
Top-10 accuracy on this dataset are comparable.

4.4.4 Cropped logo identification against large-scale refer-
ence logos. This setting enables us to evaluate the performance
of our framework in real-world scenarios where a cropped logo
is compared against a very large set of logo images with the scale
ranging from 1K to 100K. We evaluate our proposed framework on
the task of logo identification over the QMUL-OpenLogo dataset as
a probe set along with our curated large-scale open-set one-shot
WiRLD as a reference set. Similar to the previous evaluation setting,
we present Top-1 accuracy of our framework with the baselines
over various scales of images in the gallery in a line chart in Fig-
ure 8. In a large-scale logo identification setting, a performance
drop is expected with an increase in scale. However, our results
reported in Figure 8 suggest that the representations learnt by our
framework remain robust when compared against the previous
best-performing baseline SupCon [22]. Our vision-only method
slightly outperforms the vision-text method at higher scales, ow-
ing to the training constraints of OCR-Net, e.g. indifference in the
image sizes used during training of OCR-Net vs size of the cropped
logo images, original model being trained on english text.

We present the results of Levenshtein distance-based approach
along with a vision-only encoder in Figure 4, Table 4, Table 5. In
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Query: (a)
Ours

(Vis only)

Logo
Detector

Ours
(Vis+Text)

Query: (b)

Logo
Detector

Figure 7: Logo identification from natural scene images. Each row has a natural scene query image (on the left), and top-4
most similar logos obtained using our proposed method over vision only and vision+text variants on the end-to-end logo
identification setting on the QMUL-OpenLogo dataset [35]. Logos with a green bounding box represent the correct match.
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Figure 8: Large-scale logo identification. We present Top-1
accuracy of our framework with the baselines over varying
scales. Performance drop is expected with an increase of
scale; however, our framework retains its performance over
baselines owing to the robustness of learnt representations.

Table 6, we present the comparison of Top-𝑘 (𝑘 = 1, 5 and 10)
accuracy of our proposed encoder by varying visual encoders [12,
26] as backbones on the task of cropped logo identification on the
QMUL-OpenLogo dataset. An encoder with our proposed fusion
of both text and visual embeddings trained with the proposed loss
formulation brings in the best from both modalities and induces
better representative capabilities of the model, thereby resulting in
noticeably superior performance over the baselines on unseen logo
identification tasks at scale.

4.5 Qualitative Results
We perform an extensive qualitative analysis of our framework on
both cropped logo identification as well as end-to-end logo identifi-
cation from natural scene images. A selection of visual results on

cropped logo identification is shown in Figure 6; similarly, a selec-
tion of visual results on end-to-end logo identification on natural
scene images is shown in Figure 7.

4.6 Limitations and Future scope
We observe the following limitations of our work: (i) our proposed
constrastive formulation of textual-visual features of logos is not
tailored for time efficiency, (ii) we have used an off-the-shelf OCR-
Net model to extract text from logos, which is trained and tested
over English texts; hence, our model might suffer when logo images
contain text from languages other than English, and (iii) the problem
is far from solved when the scale is 100K in the task of large-scale
open-set one-shot logo identification. We leave addressing these
limitations as a future work.

5 CONCLUSION
Text within the logo has been underexplored for the task ofOpen-set
One-shot Logo Identification. Towards this end, we have presented
a framework that fuses textual as well as visual features associated
with the graphical design of logos and learns robust representation
using a novel formulation of supervised contrastive learning. Our
proposed method outperformed previous state-of-the-art methods
under one-shot constraints. We have also introduced a large-scale
logo dataset, Wikipedia Reference Logo Dataset, which has a po-
tentially huge scope in benchmarking and evaluating large-scale
open-set one-shot logo identification techniques. Furthermore, our
exhaustive experiments have demonstrated that the representations
learned by our framework are fairly robust compared to competent
baselines on the task of large-scale open-set one-shot logo identifi-
cation. We made our data and implementation publicly available
for enabling future research.
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