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Abstract. Computer programming textbooks and software documenta-
tions often contain flowcharts to illustrate the flow of an algorithm or pro-
cedure. Modern OCR engines often tag these flowcharts as graphics and
ignore them in further processing. In this paper, we work towards making
flowchart images machine-interpretable by converting them to executable
Python codes. To this end, inspired by the recent success in natural lan-
guage to code generation literature, we present a novel transformer-based
framework, namely FloCo-T5. Our model is well-suited for this task,
as it can effectively learn semantics, structure, and patterns of program-
ming languages, which it leverages to generate syntactically correct code.
We also used a task-specific pre-training objective to pre-train FloCo-
T5 using a large number of logic-preserving augmented code samples.
Further, to perform a rigorous study of this problem, we introduce the
FloCo dataset that contains 11,884 flowchart images and their corre-
sponding Python codes. Our experiments show promising results, and
FloCo-T5 clearly outperforms related competitive baselines on code
generation metrics. We make our dataset and implementation publicly
available1.

Keywords: Flowchart Understanding, Code Generation, Large Lan-
guage Models.

1 Introduction

Flowcharts are widely used across documents to represent algorithms, processes,
or workflows in a graphical manner and provide a clear and concise understand-
ing of complex processes. They contain short textual commands or conditions
inside various intent-specific shapes, e.g., diamond for decision-making block,
rhomboid for input, and output. These shapes are connected with directed or
undirected arrows to define a sequential flow of information and processing. In
computer programming textbooks and software documentation, flowcharts are
more often used as a program-planning tool to communicate the complex logic

1 https://vl2g.github.io/projects/floco

https://vl2g.github.io/projects/floco
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Flowchart Image Python code

Fig. 1. Flow2Code. A scanned document from a programming text book [10] con-
taining a flowchart is shown here. Our aim is to convert flowchart images to executable
computer programs. We scope ourselves to cropped flowchart images and Python codes
in this work.

of programs and keep track of the data flow through a process, as shown in
figure 1. These visual depictions help beginners in programming to focus on for-
mulating the logic behind the program while ignoring the intricacies of the syntax
of different programming languages. Machine interpretation of these flowcharts
followed by automatic code generation would not only help school students and
people from non-software engineering backgrounds but also speed up software
development. In order to make these flowchart images machine-interpretable,
we study the problem of automatically converting flowchart images to a com-
puter program (code) in a high-level language. This problem is referred to as
Flow2Code [16]. Despite its practical importance and utility, Flow2Code
has not been rigorously explored in the literature.

There is no existing large-scale dataset in flowchart-to-code literature for
performing a rigorous experimental evaluation of Flow2Code task. To fill
this gap, we introduce the first dataset, namely FloCo. The FloCo contains
11,884 flowchart images along with corresponding Python codes. Inspired by the
success of transformer-based approaches in natural language and code genera-
tion tasks [2,3,8,17,26], we present FloCo-T5 – a novel framework to convert
flowchart images to the Python code. In our proposed architecture, we first con-
vert the flowchart images into a sequence encoding by automatically detecting
different shapes and reading text using off-the-shelf OCR engines [1,20]. Then,
to adapt our transformer model to this novel domain, we pre-train it on the
masked token modeling objective using a large number of logic-preserving data-
augmented code samples. This pre-training step helps the model to understand
the structure and semantics of the programming language as well as the flowchart
encoding. Finally, we fine-tune the model on train split as a sequence-to-sequence
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generation problem where flowchart encoding and expected Python code are
used as input and output sequence, respectively. We conducted extensive exper-
iments with the sequence encoding of the flowchart images (as shown in Table 2)
and compared the code generation performance of our model against compet-
itive baselines, namely Vanilla Transformer [32], BART [19], PLBART [2] and
CodeT5 [33]. Our experiments show that FloCo-T5 outperforms all other base-
lines on different code generation metrics, showing the efficacy of the proposed
pre-training objective and data augmentation techniques. Qualitative results and
further analysis (Figures 6 and 7) demonstrate that our model effectively learns
the structure and pattern of programming languages and the logical data flow
and generates syntactically correct code corresponding to the flowchart images.
Contributions: The major contributions of this work are three folds:

1. We study the Flow2Code task in a “large-scale setting” and introduce
an accompanying dataset – FloCo containing 11,884 flowchart images and
corresponding Python codes. This dataset shall enable future research in this
under-explored space (Section 3).

2. We propose a novel framework viz. FloCo-T5 to address the task in hand,
which involves generating flowchart encodings, pre-training CodeT5 on the
task-specific objective with augmented codes, and finally fine-tuning for the
code generation task (Section 4).

3. We conducted extensive experiments with various baselines and proposed
task-specific code augmentation and pre-training strategy. We achieve BLEU,
CodeBLEU, and exact match scores of 67.4, 75.7, and 20.0, respectively. To-
wards the end, we show that our model can be adopted to hand-drawn
flowchart images as well (Section 5).

2 Related Work

2.1 Flowchart Understanding

There have been several attempts to build software for flowchart-to-code conver-
sion, such as authors in [12], and [30] introduced interactive user interfaces to
convert flowcharts to codes on-the-fly in various programming languages. These
rule-based approaches, however, impose restrictions and do not support the con-
version for offline flowchart images like ours. In [35], a platform was designed to
recognize flowcharts and convert them to ANSI-C code using structure identifica-
tion. In [16], a method was proposed for handwritten flowcharts, using rule-based
techniques for preprocessing and generating pseudo code. In [9], improved results
were achieved in flowchart recognition by combining statistical and structural
information. In [28], the Faster RCNN object detection system was extended
with an arrow keypoint predictor to recognize handwritten flowcharts. In [13],
DrawnNet was proposed, a keypoint-based detector for handwritten diagram
recognition.

A recent work [31] introduced a novel benchmark and dataset for question-
answering over flowcharts. However, their flowchart images are unsuited for pro-
gramming tasks and can not be used for our problem. The work closest to our
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setting is [23], which targets the digitization of handwritten flowchart images
with Faster RCNN and OCR-techniques, followed by converting them to codes
in C programming language using a CNN-LSTM based model. In this task,
the authors propose a dataset of 775 handwritten flowchart images in Spanish
and English languages. However, this dataset is unsuited for Flow2Code as it
only consisted of hand-drawn flowchart images, with many samples consisting
of only box drawings with no text, and the corresponding C codes were publicly
unavailable. In this work, we consider Flow2Code as a sequence-to-sequence
generation problem and address it using a state-of-the-art transformer-based
technique in a data-driven manner. Further, we curate a dataset of 11.8K sam-
ples containing both digitized and handwritten flowchart images along with their
corresponding Python codes to provide a more suitable benchmark for this task.

2.2 Large-scale pre-trained Language Models

The introduction of the transformer [32] architecture has brought a remarkable
revolution in natural language processing. Further, to deal with the scarcity
of labeled data and build a general-purpose model for a wide range of NLP
applications, Radford et al. [25] proposed GPT, which is based on a transformer-
decoder and pre-trained with an unlabeled pool of data in a self-supervised
fashion. However, it follows a unidirectional autoregressive approach and is not
suitable for tasks utilizing information from the entire sequence. Kenton et al.
introduced BERT [17], a transformer-encoder-based method trained in a similar
self-supervised fashion. BERT [17] follows a bidirectional autoencoder nature and
is unsuitable for generation tasks that utilize information from the previously
generated tokens in the sequence. To deal with the shortcomings of GPT [25]
and BERT [17], Lewis et al. introduced BART [19], a denoising autoencoder
that uses a bidirectional encoder and an auto-regressive decoder. These large-
scale language models are often fine-tuned with a small set of labeled data for
the supervised downstream task. In general, there are other well-explored pre-
trained transformer-based methods such as T5 [26], MASS [29], ELECTRA [11],
and RoBERTa [21]. In this work, we utilize CodeT5 [33], which adopts the
encoder-decoder-based transformer model viz. T5 [26], and is pre-trained on
programming language data.

2.3 Language Modeling for Code Generation

A significant amount of effort has been invested in automating software engi-
neering using deep learning. Recent work has focused on transferable represen-
tations rather than task-specific ones. Pre-trained NLP models like BERT [17],
GPT [25], and BART [19] have demonstrated transferability to programming
languages, yielding positive results for a range of code-related tasks.

Feng et al. [14] introduced CodeBERT, which utilized BERT architecture
pre-trained on programming language and natural language used in the software
development domain, with masked language modeling objective. Guo et al. [15]
proposed GraphCodeBERT as an improvement upon CodeBert by leveraging
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Table 1. Statistics of the FloCo dataset.

Property Value

Total number of samples 11,884
Avg. length of the program (in tokens) 46
Avg. length of the program (in lines) 4.6

Train set size 10,102
Test set size 1,188
Validation set size 594

dataflow in source code through two additional pre-training tasks, predicting
code structure edges, and aligning representations between source code and code
structure. Ahmad et al. [2] introduced PLBART, a bidirectional and autoregres-
sive transformer pre-trained on unlabeled natural language and programming
language data, with denoising autoencoding objective, where the noising strate-
gies employed were token masking, token deletion, and text infilling. Wang et al.
[33] proposed CodeT5 by extending T5 [33] to programming languages. Similar
to PLBART [2], it is a unified encoder-decoder transformer model, but it has
task-specific fine-grain pre-training objectives such as masked span prediction,
identifier tagging, masked identifier prediction, and bimodal dual generation ob-
jectives. As CodeT5 [33] has the advantage of task-specific pre-training strate-
gies, we adopted it for our main method. We generated sequential encodings
from flowchart images to treat Flow2Code as a sequence-to-sequence problem.
We pre-trained the CodeT5 model with masked token modeling objective on
a large number of logic-preserved augmented codes. Finally, we fine-tuned the
pre-trained model for code generation.

3 FloCo: A novel dataset for Flowchart image to python
Code conversion

We introduce a novel large-scale dataset for Flowchart images to python Code
conversion. We refer to this dataset as FloCo. It contains 11,884 flowchart
images and corresponding python codes. A selection of representative examples
from the FloCo dataset is depicted in Figure 2. We make FloCo publicly
available for download 2.

Flowchart-related research has been under-explored in the literature. How-
ever, there exist some related datasets such as (a) OHFCD dataset [5] has 419
handwritten flowcharts; however, it does not contain the corresponding codes as
their focus is reading handwritten flowchart images and not code generation, (b)
a more recent dataset namely FlowchartQA [31] introduces a synthetic dataset
for question answering and reasoning on flowcharts. (c) in [23], authors intro-
duced a collection of 775 handwritten flowchart images and corresponding C
programming languages. However, codes for this dataset are not publicly avail-

2 https://vl2g.github.io/projects/floco/

https://vl2g.github.io/projects/floco/
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from collections import defaultdict

def get_unique(test_list):
    res = defaultdict(list)
    for sub in test_list:
        res[sub[1]].append(sub[0])
    res = dict(res)
    res_dict = dict()
    for key in res:
        res_dict[key] = 
len(list(set(res[key])))
    return str(res_dict)

def fun188(P, R, T):
    A = P * (1 + R / 100) ** T
    CI = A - P
    return CI

from collections import 
defaultdict

get_unique

input:test_list

    res = defaultdict(list)

        
res[sub[1]].append(sub[0])

    res = dict(res)

    res_dict = dict()

res_dict[key] = 
len(list(set(res[key])))

Output: str(res_dict)

for sub 
in 

test_list

for key 
in res

end

no

yes

no

yes

def fun188

end

Input: P, R, T

output: CI

    A = P * (1 + R / 100) ** T

import math

start cone

input: r, h

l=math.sqrt(((r * r)+(h * h)))

LSA = ((math.pi * r) * I)

output: LSA

end

import math
def cone(r, h):
    l = math.sqrt(r * r + h * h)
    LSA = math.pi * r * l
    return LSA

start reverse

input: lists

for l in 
lists

l.sort(reverse=True)

output: lists

end

yes

no

def reverse(lists):
    for l in lists:
        l.sort(reverse=True)
    return lists

Fig. 2. Samples from the proposed FloCo dataset. Each flowchart image is associated
with the corresponding ground truth code.

able. Our new dataset, viz. FloCo has been introduced in this work to fill the
research gap in the literature.

The FloCo dataset contains 11,884 flowchart images and python code pairs.
The dataset has been generated by writing a few codes from scratch and gath-
ering and cleaning codes from the MBPP (Mostly Basic Python Programs) [4],
and code-to-text dataset of CodeXGleu [22] datasets. The digitized flowchart
images corresponding to the codes are generated using the pyflowchart3 and
diagrams4 libraries. FloCo is divided into train, test, and validation sets fol-
lowing an 85:10:5 ratio split respectively. Our data comprises a diverse collection
of Python programs spanning a spectrum of complexity and uniqueness in their
designated tasks. A few examples of these designated tasks include calculating
the N th Fibonacci number, determining binomial coefficients, checking if a bi-
nary tree is balanced, and finding nth Catalan number. Detailed tatistics related
to FloCo are provided in Table 1.

3 https://pypi.org/project/pyflowchart/
4 https://diagrams.mingrammer.com/

https://pypi.org/project/pyflowchart/
https://diagrams.mingrammer.com/


Towards Making Flowchart Images Machine Interpretable 7

OCR

Flowchart Encoding Generator

start fun1, OVAL [SEP] input: X, PARALLELOGRAM 
[SEP] y = ((16 + x) - 20), RECTANGLE [SEP] output: y, 
PARALLELOGRAM [SEP] end function return, OVAL

Pre-trained
Transformer Encoder

Pre-trained
Transformer Decoder

def fun1(x):\n y = 16 + x - 20\n return y [EOS]

[BOS] def fun1(x):\n y = 16 + x - … 
Encoder

Decoder

(A) start fun1, OVAL [SEP] input: X, [MASK] [SEP] y = ((16 + x) - 
20), RECTANGLE [SEP] [MASK]: y, PARALLELOGRAM [SEP] end 

function return, [MASK]
or

(B)  def fun1[MASK]:\n y = 16 + x - 20\n [MASK] y

(A) start fun1, OVAL [SEP] input: X, PARALLELOGRAM [SEP] y 
= ((16 + x) - 20), RECTANGLE [SEP] output: y, 

PARALLELOGRAM [SEP] end function return, OVAL
or

(B)  def fun1(x):\n y = 16 + x - 20\n return y

(a)  FloCo-T5 (b) Masked Modelling

start fun1

input: x

output: y

Y = ((16 +  x) - 20)

End function: 
return

Shape Recognition

[BOS]

[EOS]

Positional embedding

Addition

Start Token

End Token

Fig. 3. Overview of the proposed method, viz. FloCo-T5: (a). Given flowchart
image is converted into sequence encoding using the off-the-shelf OCR techniques.
The encoder of the pre-trained CodeT5 model takes flowchart encoding added with
positional encodings as input. The Decoder initially takes the start token as input and
has access to encoder output, then autoregressively generates the expected code word
by word. (b). Shows the token mask modeling. Before fine-tuning, CodeT5 is pre-
trained on a token mask modeling task, where some tokens of flowchart encoding are
masked and reconstructed by the decoder in an unsupervised learning fashion [Best
viewed in color].

4 Proposed Approach

The goal of Flow2Code is to generate code from a given flowchart image. We
approach this task as a sequence-to-sequence generation problem involving two
different modalities: image (flowchart) and text (code) and propose a framework,
namely FloCo-T5 (Flowchart-to-Code T5 Model) that involves: (i) reading and
converting the flowchart image into a sequence encoding, and then (ii) autore-
gressively generating code using the flowchart encoding. Figure 3 illustrates the
proposed framework. We describe the two steps in the following subsections:

4.1 Flowchart Encoding Generation

In this step, we encode flowchart images into intermediate sequence encodings
in the form of text. Given the flowchart image, we first detect and recognize the
flowchart blocks, namely process (rectangle), decision (diamond), input/output
(rhomboid), and terminal (oval), using the Hough transform-based shape detec-
tors [7]. We further employ an off-the-shelf OCR method viz. easyOCR [1] to
recognize the text within the boxes and on arrowheads for digitized flowchart
images. We then match the recognized shapes and text using their respective
coordinates, i.e., a text is paired with the name of a block only if the text co-
ordinates lie within the shape coordinates. The final flowchart encoding is a
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Table 2. Examples of different flowchart encoding. Refer to the main text for more
details. A comparative study of different encodings is provided in Table 4.

Tuple encodings String encodings Modified string encodings

[(’start fun1’, ’OVAL’), (’input: X’, ’PAR-
ALLELOGRAM’), (’y = ((16 + x) -
20)’, ’RECTANGLE’), (’output: y’, ’PAR-
ALLELOGRAM’), (’end function return’,
’OVAL’)]

{startfun1,OVAL},{input:
X,PARALLELOGRAM},{y = ((16
+ x) - 20),RECTANGLE},{output:
y,PARALLELOGRAM},{end function re-
turn,OVAL}

start fun1, OVAL [SEP] input: X, PARAL-
LELOGRAM [SEP] y = ((16 + x) - 20),
RECTANGLE [SEP] output: y, PARAL-
LELOGRAM [SEP] end function return,
OVAL

Fig. 4. Data augmentation: Example of data augmentation used in code samples
during pre-training of FloCo-T5. We propose three logic-preserving augmentations
that include changing the function names, variable names, and both. Augmented names
are highlighted in red color.

Function augmentedOriginal Code

Function-variable augmentedVariable augmented

import numpy as np
def theta(self, s):
      s = np.where(s < -709, -709, s)
      return 1 / (1 + np.exp((-1) * s))

import numpy as np
def he9GxMm5QgFn(self, s):
      s = np.where(s < -709, -709, s)
      return 1 / (1 + np.exp((-1) * s))

import numpy as np
def he9GxMm5QgFn(self, Lyv):
      Lyv = np.where(Lyv < -709, -709, Lyv)
      return 1 / (1 + np.exp((-1) * Lyv))

import numpy as np
def theta(self, kO9):
      kO9 = np.where(kO9 < -709, -709, kO9)
      return 1 / (1 + np.exp((-1) * kO9))

text sequence combining all the recognized text and shapes in the form of a
key-value pair in the order in which they appear (from start to end). To this
end, we experiment with three different strategies for encoding representation:
(i) tuple encodings, wherein each step of the flowchart is represented as a tuple
of the text and the box shape, each within quotes; (ii) string encodings, which
eliminates quotes from text and shapes, and make use of braces to separate each
step of the flowchart; and the optimized (iii) modified string encodings, where
we utilize the [SEP] special tokens in the vocabulary of transformers to get rid
of any additional braces or quotes and delineate each step of the flowchart. We
provide an example for each of these encoding representations in Table 2. We
experiment with all three encoding forms and compare their effectiveness on our
target task in Table 4.

4.2 Code Generation

Inspired by the recent success of large-scale pre-trained code generation models,
we adapt Code-T5 [33] – a transformer-based baseline trained for code gener-
ation, to our task. To this end, we initially pre-train it on a large number of
logic-preserving augmented codes on the masked modeling objective in a self-
supervised setting. The pre-training process adds knowledge of flowchart struc-
ture and code semantics to the model. Finally, we fine-tuned the pre-trained
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Code-T5 on the training set of FloCo. The data augmentation, pre-training,
and fine-tuning process are performed as follows:

Data Augmentation: In order to increase the size of the dataset while keeping
the logic of codes intact, we explored data augmentation. This has been achieved
by changing function names and variable names. We augmented the training sub-
set of the FloCo dataset. Replacing all functions and variables with a specific
set of characters would make the dataset biased. Therefore, the function and
variable names were constructed randomly using uppercase/lowercase letters,
underscore, and/or digits while keeping the naming conventions for the Python
programming language in mind. The length of the function names was chosen
randomly from the range of 4−13; for variable names, the range was 1−3. Thus,
each program was augmented in three different ways: changing the function or
variable names or changing both function and variable names together. Figure 4
depicts all the augmentations corresponding to a sample code. After augmen-
tation, the train dataset size increased from 10, 102 to 40, 408. These 30, 306
augmented codes have been utilized at the pre-training stage of our method.

Masked Modeling Objective: Inspired by the success of the Masked Lan-
guage Modeling (MLM) pre-training objective in BERT [17], we propose an
analogous objective specific to our problem. We adopted the pre-trained CodeT5
model and trained it on the augmented codes and flowchart encodings of the
train set of FloCo. Tokens in the pre-training dataset are masked randomly
at a probability of 0.15, and we aim to optimize the loss associated with the
reconstruction of the original sample, as shown below:

Lmml(E, Ē) = −
N∑
t=1

log(et|e0:t−1, Ē). (1)

where E =< e1, e2 . . . , eN > and Ē =< fr(e1), fr(e2), . . . , fr(eN )) > represent
the ground truth and masked encodings/code, respectively. Ē is obtained by
applying the function fr(ei) to the ground truth encoding, which randomly re-
places token ei with the mask token [MASK] with a probability of 0.15. N ,
e0 denotes the length of the flowchart encoding and start token, respectively.
Figure 5 shows examples of masked modeling implemented for encoding and a
code sample. For the encoding input, if we mask the shape of a block (PARAL-
LELOGRAM in the given example), the model must be able to infer the correct
shape based on the context and the pattern it has learned during training.

Fine-tuning: After pre-training FloCo-T5 on augmented data, we further
fine-tuned it on the training data of FloCo, for Flow2Code task. Figure 3 (a)
shows the training pipeline; the given flowchart image is first converted into
sequence encoding by detecting shapes and the text inside the shapes using
an off-the-shelf OCR technique. Positional encodings are added to the flowchart
encodings before feeding them to the encoder. The decoder has access to the out-
put of the encoder. It starts with a start token, and auto-regressively generates
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Fig. 5. Masked Modelling: Example encoder inputs and decoder outputs during
mask token prediction of FloCo-T5.

Encoder Input Decoder Output

"start average_tuple,OVAL [SEP] input: nums,[MASK] 
[SEP] result = [(sum([MASK]) / len(x)) for x in 
zip(*nums)],RECTANGLE [SEP] 
output:[MASK],PARALLELOGRAM [SEP] end,None"

"start average_tuple,OVAL [SEP] input: 
nums,PARALLELOGRAM [SEP] result = [(sum(x) / 
len(x)) for x in zip(*nums)],RECTANGLE [SEP] 
output: result,PARALLELOGRAM [SEP] end,None"

def sector_area(r, a):
      pi = 22 / 7
      if a >= 360:
            [MASK] None
      sectorarea = (pi * r**2) * (a / 360) 
      return [MASK]

def sector_area(r, a):
      pi = 22 / 7
      if a >= 360:
            return None
      sectorarea = (pi * r**2) * (a / 360) 
      return sectorarea

code token-by-token. To this end, during fine-tuning, we employed a language
modeling loss expressed as follows:

L(X,E) = −
M∑
t=1

log(xt|x0:t−1, E). (2)

where X =< x1, x2, . . . , xM > denotes the ground truth code. Additionally,
M , and x0 represent the length of the code and start token, respectively. Note
that during both the pre-training and the fine-tuning stages, we include different
flowchart box shapes as a special token in the transformer model’s vocabulary.

5 Experiments and Results

In this section, we present an extensive experimental analysis on the FloCo
benchmark to verify the efficacy of our proposed model.

5.1 Evaluation metrics

Following the code generation literature [2], we evaluated the performance of our
baselines and proposed model using the following three metrics:

i. BLEU [24]: a widely used word-overlap metric for assessing the quality of
machine-translated text by comparing the n-grams of the generated code to
the reference (ground truth) code and counting the number of matches.

ii. CodeBLEU [27]: a specialized metric that evaluates the quality of gener-
ated code, taking into account syntactical and logical correctness and the
code’s structure as reflected in the abstract syntax tree and data flow, in
addition to comparing n-grams.

iii. Exact Match (EM): a binary metric that checks if the generated code
sequence is exactly the same as the ground-truth code.
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Table 3. On the FloCo test set, we compared FloCo-T5 to competitive transformer-
based baselines and found that our method achieved higher scores for all metrics.

Method BLEU CodeBLEU EM

Vanilla Transformer [32] 10.3 26.8 0.0
BART [19] 31.1 40.7 2.2
PLBART [2] 55.7 63.7 19.4
CodeT5 [33] 63.8 71.8 17.8

FloCo-T5 67.4 75.7 20.0

5.2 Baseline Models

To evaluate the effectiveness of the proposed method, we compared it against
the following four competitive baselines:
Vanilla Transformer [32] is the attention-based encoder-decoder architecture
upon which the transformer-based pre-trained models are built. By comparing
the proposed method with this baseline, we can observe the specific advantages
of pre-training.
BART [19] is a pre-trained, bidirectional, autoregressive encoder-decoder archi-
tecture that was pre-trained on unlabelled natural language data and optimized
using reconstruction loss. The noising techniques used were token masking, to-
ken deletion, text infilling, sentence permutation, and document rotation.
PLBART [2] is an extension of BART and was pre-trained on a large-scale
dataset containing unlabelled natural language and programming language data.
The pre-training objective was denoising autoencoding, and the noising strate-
gies used were token masking, deletion, and infilling.
CodeT5 [33] adopted the T5 (pre-trained on natural language) architecture
and was pre-trained on natural language and programming language data. The
pre-training objectives were span prediction, identifier tagging, masked identifier
prediction, and bimodal dual generation.

By comparing our proposed method with these baselines, we can observe how
our method outperforms them and understand how it leverages the pre-training.

5.3 Implementation details for Reproducibility

FloCo-T5 is implemented using the Huggingface library [34] and utilizes the
implementation of CodeT5 [33], using the ‘Salesforce/codet5-base’ pre-trained
model available on Huggingface. The model contains 222.9 million trainable pa-
rameters. It consists of 12 encoder, 12 decoder layers, and 12 attention heads in
each layer. The input encodings are truncated or padded to a maximum length
of 512 tokens. We optimize training using the Adam [18] optimizer with a learn-
ing rate of 1e− 5, a warmup for 2450 steps, and a batch size of 16. We use the
same training configuration in both the pre-training and fine-tuning stages. All
the baselines were trained on a single NVIDIA A6000 GPU with 48 GB VRAM.
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def math(n): 
sum = 0 for i in range(1, n + 1): 
sum = sum + i * i * i 
return sum

def fourth_power_sum(n):

    sum = 0
    for i in range(1, n+1):
        sum = sum + (i * i) * i
    return sum

def _fourthPowerSum(n):

    sum = 0
    for i in range(1, n+1):
        sum = sum + (i * i * i * i)
    return sum

start: difference

input: n

S = (n*(n+1)) // 2)

Res = (S*(S-1))

output: res

end

import math

sum = 0

for i in range(1, (n +1))

sum = (sum + (((i*i)*i)*i))

output::sum

end

yes

 no

res = n * (n + 1)) // 2 
res = s * (S - 1) 
return res

def difference(n):

    s = n * n + 1
    res = s * (s - 1)
    return res

def difference(n):

      S = (n * (n + 1)) // 2
      res = S * (S - 1)
      return res

Ground Truth

PLBART 

CodeT5 

   FloCo-T5 (Ours)

def difference(n):

      S = (n * (n + 1)) // 2
      res = S * (S - 1)
      return res

def fourth_Power_Sum(n):
    sum = 0
    for i in range(1, n + 1):
        sum = sum + (i * i * i * i)
    return sum

start fourth_Power_Sum

input: n

Fig. 6. Qualitative comparison: Results on two flowchart images using PLBART,
CodeT5 and our method. Errors are highlighted in dark red color. The codes generated
by our method are similar to the ground truth as compared to the PLBART and
CodeT5. CodeT5 has fewer errors as compared to PLBART.
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Table 4. Comparision of different flowchart encoding representations on the perfor-
mance of FloCo-T5.

Method BLEU CodeBLEU EM

Tuple encodings 16.7 37.7 0.2
String encodings 50.1 63.4 11.1
Modified string encodings (Ours) 67.4 75.7 20.0

The training process requires nearly 12 hours to reach convergence. We make our
implementation available here: https://vl2g.github.io/projects/floco/.

5.4 Results and discussions

We evaluate our method on the proposed FloCo dataset and compare it against
competitive baselines, namely vanilla transformer [32], BART [19], PLBART [2],
and CodeT5 [33]. Table 3 shows the performance of the implemented baselines
and proposed FloCo-T5 on three evaluation metrics. Vanilla Transformer [32] is
trained from scratch in contrast to other baselines, pre-trained on large-scale un-
labelled data with different self-supervised pre-training objectives. Hence, Vanilla
Transformer lacks the understanding of language and programming semantics
and structure, resulting in the lowest performance for all the metrics. BART [19]
is pre-trained on natural language text and thus, has a better understanding of
the semantics and structure of the sequential data, as natural text also has rules,
structure, and other syntactical properties. It results in better performance as
compared to the Vanilla Transformer for all of the metrics. PLBART is pre-
trained on the natural text and programming language, which means it has a
better understanding of code structure and semantics, resulting in better perfor-
mance compared to BART and Vanilla Transformer on all metrics. CodeT5 [33]
is pre-trained with programming-language-specific, fine-grained identifier-aware
denoising tasks, which help in exploiting code semantics and structure in a more
exquisite way, resulting in significant improvement over other baselines. In the
proposed FloCo-T5, we adopted a pre-trained CodeT5 model, which has task-
specific knowledge, and further pre-trained it on augmented training samples for
the mask token generation task. As expected, FloCo-T5 outperforms all base-
lines for all the metrics used for evaluation, showing the efficacy of the proposed
code augmentation and pre-training strategy.

Figure 6 shows the generated codes for two flowchart samples. We compare
the ground truth codes with the ones generated from PLBART, CodeT5, and
our method. FloCo-T5 is able to generate codes syntactically correct codes,
which are similar to the ground truth codes, while other baselines fall short in
generating correct codes. This observation is same across other test samples as
numerically summarized by Table 3.

We further conducted an experiment with three flowchart image encoding
methods, shown in Table 2, and results presented in Table 4. The modified string
encoding method utilized a [SEP] token to separate each step of the flowchart,

https://vl2g.github.io/projects/floco/
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Ground Truth

   FloCo-T5 (Ours)

def count_char(str1):
    total = 0
    for i in str1:
        total = total + 1
    return total

def count_char(str1):
    total = 0
    for i in str1:
        total += total * 4
    return total

def maximum(a, b):
      if a >= b:
            return a
      else:
            return b

def maximum(a, b):
      if a < b:
            return b
      return a

Fig. 7. Results on hand-drawn flowchart images using FloCo-T5. Errors are high-
lighted in dark red color. We observe an error in the program due to incorrect recog-
nition of the handwritten character ‘*’ by our OCR module.

and removed extra braces, enhancing the preservation of the flowchart’s struc-
ture, and consequently outperforming other encoding methods.

Can the proposed approach work for hand-drawn Flowchart Images?
We evaluated FloCo-T5 on hand-drawn flowchart images using 40 samples
created by three human annotators. Flowchart block detection and recognition
were performed with OpenCV [7]. For handwritten text recognition, we em-
ployed CRAFT text detection [6] and TrOCR text recognition [20]. FloCo-T5
achieved a BLEU score of 21.4% and a CodeBLEU score of 34.6% on these
hand-drawn flowcharts. Fig. 7 displays Python codes generated for two sam-
ple hand-drawn flowcharts. These results indicate our approach’s suitability for
hand-drawn flowcharts, and performance can be significantly enhanced with ad-
vances in handwritten text recognition.
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Fig. 8. Performance of FloCo-T5 across various program lengths.

Limitations: We observed that code generation performance of our model is
higher for shorter programs (<≈ 12 lines) but drops for longer programs (>≈ 15
lines) due to the dataset’s bias towards shorter programs (average length: 4.6
lines) as shown in Figure 8. To address this issue, we propose increasing the num-
ber of training samples for longer programs. Future work will focus on expanding
the FloCo dataset to include longer and more complex code and researching
information flow in state and block diagrams.

6 Conclusion

We introduced the FloCo-T5 framework for generating Python code from
flowchart images and presented the FloCo dataset to benchmark the Flow2Code
task. Flow2Code is modeled as a sequence-to-sequence problem, where flowcharts
are first encoded by detecting the shapes of blocks and reading the text within,
and further transformed into code using competitive transformer baselines. FloCo-
T5’s task-specific pre-training results in significant improvements over related
baselines. The recent advancements in Large Language Models (LLMs), such
as ChatGPT, have revolutionized the field of code generation, and they can be
adapted to solve our task. However, ensuring that these massive models have not
seen our test data is not a trivial task. Furthermore, despite these advancements,
we firmly believe that our dataset can be used to study open problems such as
development of lightweight and interpretable models for generating code from
flowchart images. We leave these as future directions to work on.
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