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Abstract

Writing comprehensive and accurate descriptions of technical
drawings in patent documents is crucial to effective knowl-
edge sharing and enabling the replication and protection of
intellectual property. However, automation of this task has
been largely overlooked by the research community. To this
end, we introduce PATENTDESC-355K, a novel large-scale
dataset containing →355K patent figures along with their
brief and detailed textual descriptions extracted from 60K+
US patent documents. In addition, we propose PATENTLMM
– a novel multimodal large language model specifically tai-
lored to generate high-quality descriptions of patent figures.
Our proposed PATENTLMM comprises two key components:
(i) PATENTMME, a specialized multimodal vision encoder
that captures the unique structural elements of patent fig-
ures, and (ii) PATENTLLAMA, a domain-adapted version of
LLaMA fine-tuned on a large collection of patents. Exten-
sive experiments demonstrate that training a vision encoder
specifically designed for patent figures significantly boosts
the performance, generating coherent descriptions compared
to fine-tuning similar-sized off-the-shelf multimodal models.
PATENTDESC-355K and PATENTLMM pave the way for au-
tomating the understanding of patent figures, enabling effi-
cient knowledge sharing and faster drafting of patent doc-
uments. We make the code and data publicly available at
https://vl2g.github.io/projects/PatentLMM/.

1 Introduction

Patents are a cornerstone of intellectual property protection,
granting inventors exclusive rights to their creations. Effec-
tive communication of these inventions is crucial for patent
examiners, courts, and the technical community to appre-
ciate the inventiveness of these inventions and assess their
novelty. Patent documents rely heavily on figures and their
corresponding textual descriptions to present technical de-
tails. Writing accurate descriptions of these figures is essen-
tial for an unambiguous understanding of the invention and
its components and facilitates knowledge sharing within the
technical community. Comprehensive descriptions also en-
sure that the invention is adequately protected against po-
tential infringements by others. However, manually crafting
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such descriptions is time-consuming and laborious, hinder-
ing the efficiency of patent processing and analysis.

One of the major challenges for generating patent figure
descriptions in an automated way is the lack of large-scale
labeled datasets. Existing datasets, while invaluable for ad-
vancing research in natural and scientific figure captioning,
do not adequately capture the nuances and complexities in-
herent to patent illustrations. To address this gap, we curate
PATENTDESC-355K, a novel large-scale dataset containing
→355K patent figures and their brief and detailed textual
descriptions extracted from 60K+ patent documents. This
dataset offers a rich and diverse collection of patent figures
that span various technical domains, along with their corre-
sponding descriptions, enabling the development and evalu-
ation of models specifically tailored for this task.

Typically, patent figures are associated with brief and de-
tailed descriptions. In our proposed PATENTDESC-355K
dataset, we found that they span an average of →34 and
→1680 tokens, respectively. Thus, unlike existing image
captioning benchmarks, for example COCO (Lin et al.
2014), TextCaps (Sidorov et al. 2020) and NoCaps (Agrawal
et al. 2019) where captions span an average of →12 tokens,
the descriptive captioning of patent figures in our dataset is
much more challenging. Moreover, unlike the natural scene
images of the existing captioning datasets, patent figures are
structured technical illustrations that adhere to a more stan-
dardized visual style for technical and legal documentation.

The emergence of Large Language Models (LLMs) and
Large Multimodal Models (LMMs) has revolutionized al-
most every vision and language task. These models exhibit
a remarkable ability to understand and generate coherent
language across diverse domains. However, applying these
models to the generation of patent descriptions presents
unique challenges. The length of descriptions and the com-
plexity inherent to patent diagrams underscore the need to
focus on various elements of the figure, such as arrows,
nodes, and text annotations. Further, contrary to dense docu-
ment images, patent figures are sparse and comprise several
elements like text, nodes, node labels (a number associated
with nodes in the patent figure), figure numbers, and arrows
in different styles, i.e., uni-direction and bidirectional, solid,
and dotted, among others. Please refer to Fig. 3 in the Ap-
pendix for an overview of these elements.

As can be seen in Fig. 1, the detailed description of patent



Generated Brief and Detailed Descriptions Ground Truth Brief and Detailed Descriptions

FIG. 1 illustrates a mobile smartphone in accordance with an aspect of 
the invention.

FIG. 1 shows the details of an exemplary electronic device in 
accordance with aspects of the invention.

Referring now to FIG. 1, an exemplary electronic device 104 is 
illustrated. It should be understood that the electronic device 104 may 
be any one of a number of electronic devices including, but not limited 
to, a cell phone, a smart phone, a personal digital assistant, a laptop 
computer, a desktop computer, a netbook computer, a server 
computer, etc. The electronic device 104 includes a processor 114, a 
memory 116, a display 118, a user interface 122, a transceiver 120, 
and an optional touch screen 160. The processor 114 is configured to 
execute instructions received from the memory 116, and is, for 
example, a general purpose processor, a field programmable gate 
array, or any other suitable processor. The processor 114 is configured 
to execute instructions received from the memory 116, including 
instructions for displaying a user interface on the display 118. The 
processor 114 may also be configured to execute instructions received 
from the transceiver 120, including instructions for receiving data from 
the transceiver 120 and instructions for transmitting data from the 
transceiver 120.The memory 116 is configured to store data received 
from the processor 114 and instructions to be executed by the 
processor 114. The memory 116 may be, for example, a random 
access memory device, a solid state memory device, or any other 
suitable storage device. The display 118 is configured to visually 
display data received from the processor 114. The display 118 may be, 
for example, a liquid crystal display, an organic light emitting diode 
display, a cathode ray tube display, or any other suitable display. The 
user interface 122 is configured to allow a user to interact with the 
electronic device 104. The user interface 122 may include, for 
example, a keypad, a touchscreen 160, a microphone, a speaker, etc. 
The transceiver 120 is configured to send and receive…

FIG. 1 shows the details of an exemplary electronic device in 
accordance with aspects of the invention. The electronic device 104 
includes a processor 114, memory 116, display 118, user interface 
122, and the like. The processor 114 may be a central processing unit 
configured to execute instructions including instructions related to 
software programs. The display 118 may be a liquid crystal display 
having a backlight to illuminate the various color liquid crystals to 
provide a colorful display. The user interface 122 may be any type of 
physical input having buttons and further may be implemented as a 
touchscreen 180.The electronic device 104 may further include in the 
memory 116, an operating system 148, a communication component 
150, a contact/motion component 152, a graphics component 154, and 
the like. The operating system 148 together with the various 
components providing software functionality for each of the 
components of the electronic device 104.The memory 116 may include 
a high-speed random-access memory. Also, the memory 116 may be a 
non-volatile memory, such as magnetic fixed disk storage, flash 
memory or the like. These various components may be connected 
through various communication lines including a data bus 
170.Additionally, the electronic device 104 may include an audio 
input/output device 156. The audio input/output device 156 may 
include speakers, speaker outputs, and in the like, providing sound 
output; and may include microphones, microphone inputs, and the like, 
for receiving sound inputs. The audio input/output device 156 may 
include and analog to digital converter and a digital to audio converter 
for audio input and output functions respectively.When implemented as 
a wireless device, the electronic device 104 may include a transceiver 
120 and the like. The electronic device 104 may provide radio and…

Figure 1: An example of generated and ground truth brief and detailed descriptions using our proposed PATENTLMM.

figures heavily makes use of these elements to convey the
semantics of the figure. Given this dramatic difference be-
tween captions of natural scenes versus patent figures, it was
anticipated that recent image captioning methods (Li et al.
2022; Wang et al. 2022a,b) and multimodal LLMs (Ye et al.
2023b; Liu et al. 2024a; Zhu et al. 2024) would perform
poorly for our task in a zero-shot setting. Surprisingly, these
approaches demonstrated suboptimal performance even af-
ter fine-tuning on our dataset. These unique properties of
patent figures require specialized system design to ensure
the accurate and concise generation of descriptions without
introducing hallucinations or irrelevant details.

In this paper, we propose PATENTLMM – a novel
model to generate descriptions of patent figures. The model
contains two important components: PATENTMME and
PATENTLLAMA. PATENTMME is a specialized multi-
modal vision encoder for patent figures, trained using
masked language modeling loss, along with two other novel
loss functions focused on learning structure from sparse
patent figures. PATENTLLAMA is a domain-adapted ver-
sion of LLaMA fine-tuned on a large collection of patent text
from the Harvard USPTO Dataset (HUPD) (Suzgun et al.
2024). PATENTLMM combines the PATENTMME encoder
and the PATENTLLAMA using a projection layer.
The major contributions of our work are as follows. (i)
We present a large-scale dataset of →355K patent figures
and their brief and detailed descriptions. (ii) We propose a
novel multimodal model PATENTLMM, comprising a patent
domain-specialized vision encoder trained using objectives
specifically tailored to capture the structure of patent doc-
uments and an LLM fine-tuned on patent data. (iii) We ex-
tensively benchmark existing captioning models and mul-
timodal LLMs and show that our proposed approach sur-
passes their best performance on the average BLEU metric
by 10.22% and 4.43% on an absolute scale for generating

brief and detailed descriptions, respectively.

2 Related Work

Image Captioning in Pre-LMMs era: The patent figure
description task is broadly similar to the image caption-
ing task, which has been an active research area in the last
decade. Some representative early work on image captioning
includes the combination of a CNN encoder with an LSTM
decoder (Vinyals et al. 2015), a multimodal RNN architec-
ture that uses local and global image features (Andreas et al.
2016), an adaptive attention model (Lu et al. 2017), and a
bottom-up and top-down attention model (Anderson et al.
2018). Recent works have also focused on improving cap-
tion diversity (Shetty, Roumeliotis, and Laaksonen 2017),
novel object captioning (Lu et al. 2018), and incorporating
external knowledge (Gu et al. 2019). As discussed in the pre-
vious section, our task differs significantly from these previ-
ous efforts on image captioning in terms of the length of
descriptions and the structure of patent figures.
Describing Scientific Figures: Patent figures are a specific
form of scientific illustrations. Although previous work on
generating descriptions of patent figures has been sparse,
ample research has been done to caption scientific fig-
ures. Chen et al. (2019, 2020) create and leverage FigCAP
and adapt an LSTM-based model (Hochreiter and Schmid-
huber 1997) for captioning. Recently, Hsu, Giles, and Huang
(2021) collected the SciCap dataset from articles published
on arXivIn (Yang et al. 2023), the authors augment the
SciCap dataset with additional information such as OCR
text from figures and referring sentences from the text to
curate SciCap+, and demonstrate the performance boost
achieved by incorporating extra information. Kantharaj et al.
(2022) and Tang, Boggust, and Satyanarayan (2023) ad-
dress the problem of captioning various visualization charts



of data. Certain works go beyond natural language descrip-
tions to generate code, particularly for flowcharts. For exam-
ple, Shukla et al. (2023) and Liu et al. (2022) specifically
address the generation of code from flow chart images.A
parallel work PatFig (Aubakirova, Gerdes, and Liu 2023)
scrapes a similar dataset as ours with 17K training samples
and 2K test samples, and demonstrates the performance of
MiniGPT-4 (Zhu et al. 2024) in the proposed dataset. In this
work, we contribute a →20↑ larger dataset and propose a
novel model, PATENTLMM, which is almost twice as effec-
tive as MiniGPT-4 in BLEU-4 for PATENTDESC-355K.
Large Multimodal Models: Recent work in the multimodal
(vision and language) community has focused on leveraging
the world knowledge implicitly encoded in large language
models for multimodal tasks such as visual question answer-
ing and image captioning (Zhu et al. 2024; Li et al. 2023;
Liu et al. 2024a; Achiam et al. 2023; Ye et al. 2023b, 2024;
Wang et al. 2022b; Team et al. 2023; Alayrac et al. 2022),
visual grounding (Ye et al. 2024; Zhu et al. 2024; Team et al.
2023; Achiam et al. 2023) and image-text matching (Li et al.
2022, 2023). This is achieved by feeding an image repre-
sentation as input along with the prompt to the language
model and modeling the output using the language model-
ing objective. Recent advances include Flamingo (Alayrac
et al. 2022), which inserts trainable gated cross-attention
layers into a pretrained LLM (Hoffmann et al. 2022). BLIP-
2 (Li et al. 2023) leverages pre-trained ViT (Dosovitskiy
et al. 2021) and LLaMA (Touvron et al. 2023), combined
with QFormer, to translate image embeddings into LLM
prompt embeddings. MiniGPT-4 (Zhu et al. 2024) builds
upon pretrained BLIP-2 and finetunes an additional linear
layer to project queries into the LLM on a curated dataset.
In contrast, LLaVA-1.5 (Liu et al. 2024a) proposes a rela-
tively simple and effective two-stage approach. In addition,
document-specific LLMs such as LayoutLLM (Luo et al.
2024), UReader (Ye et al. 2023a) and TextMonkey (Liu et al.
2024b) have shown impressive performance on Document
VQA task. We compare with several of these models and
show that these models do not perform competitively for the
task of generating descriptions from patent figures.

3 PATENTDESC-355K: A Novel Dataset of

Patent Figures with Descriptions

We introduce PATENTDESC-355K – a novel large-scale
dataset tailored for generating descriptions for patent fig-
ures. Our proposed dataset comprises 355K patent figures
sourced from Google Patents1, with each image accompa-
nied by its brief and detailed descriptions extracted from
the corresponding patent documents. The dataset is available
for download on our project website: https://vl2g.github.
io/projects/PatentLMM/. Fig. 1 visualizes a ↓patent fig-
ure, brief description, detailed description↔ triplet from our
dataset. With our primary focus on US patents published af-
ter 2004, our dataset spans over 60K patents from assignees
like Amazon, Microsoft, LinkedIn, Google, Yahoo, etc. To
assess the quality of the dataset, we manually evaluated a
random set of 100 patent figures with their brief and detailed

1https://patents.google.com

Table 1: PATENTDESC-355K: Dataset Statistics.

Train Validation Test

Number of Images 320,717 17,286 17,336
Avg. number of tokens in brief descriptions 34.37 34.28 34.30
Avg. number of tokens in detailed descriptions 1,677.85 1,676.71 1,697.16
Number of Unique Patents 50,448 8,027 7,964
Avg. number of images per patent 6.36 2.15 2.18

descriptions and computed the sentence-level precision and
recall of the extracted descriptions against the ground-truth
descriptions. For brief descriptions, both precision and recall
scores were 100%. For detailed descriptions, precision and
recall were 90. 81% and 91. 96%, respectively. More details
on data set curation, preprocessing, description extraction,
and quality assessment are provided in Appendix A.
Dataset Analysis: Table 1 presents detailed statistics of the
355K image-description triplets in our dataset. During the
creation of training, validation and test set splits, we en-
sure absolute exclusivity between patents in the train set
and those in the combined validation and test sets, to en-
able robust out-of-sample evaluation. To achieve this, we
randomly sampled → 12.6K patents from → 60K, represent-
ing → 82.5K images. From this isolated subset of images,
we sample →17K images each for the val and test set, and
discard the remaining images. This sampling technique also
helps maintain the diversity within the validation and test
sets, thereby providing a fair and representative evaluation.
Our detailed descriptions span →1.7K tokens on average,
which is much larger compared to an average token length
for popular image captioning benchmarks (Lin et al. 2014;
Chen et al. 2015; Sidorov et al. 2020).

4 Methodology

Our approach is inspired by the recent success of large
multimodal models like MiniGPT-4 (Zhu et al. 2024) and
LLaVA (Liu et al. 2023, 2024a), which have demonstrated
state-of-the-art performance on several benchmarks by ef-
fectively aligning visual and textual modalities. We intro-
duce PATENTLMM, which combines our domain-adapted
version of the LLaMA language model, namely PATENTL-
LAMA, with our novel visual encoder specialized for patent
figures, namely PATENTMME. In this section, we describe
the architectures of PATENTMME and PATENTLLAMA,
and the overall framework of PATENTLMM.

4.1 PATENTMME: Encoder for Patent Figures

The Vision Transformer (ViT) (Dosovitskiy et al. 2021),
commonly used as a vision encoder in existing image cap-
tioning frameworks, is typically pre-trained on natural scene
images, which are fundamentally different from patent fig-
ures. A better suited encoder is perhaps LayoutLM (Xu et al.
2020, 2021; Huang et al. 2022) which has shown impressive
performance in document image understanding tasks. How-
ever, patent figures have a sparse layout compared to dense
document images and are characterized by specific struc-
tured visual syntax. Unlike document images, patent figures
comprise labeled nodes interconnected with arrows and ac-
companied by textual elements. The semantic relationship
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Figure 2: PATENTMME Architecture. We jointly process OCR tokens and visual embeddings to produce multimodal context-
aware embeddings. These contextual embeddings are optimized using our proposed MLM, LA-MIM and PC objectives.

between these diagrammatic constituents is paramount for
decoding the inventive concepts and technical specifications
elucidated within the patent figures. We, therefore, build on
the existing document image understanding capabilities of
LayoutLMv3 (Huang et al. 2022) and pre-train it with novel
objectives, specifically tailored to capture the structural in-
formation of patent figures.

Architecture: The proposed PATENTMME shares its ar-
chitecture with LayoutLMv3 (Huang et al. 2022) and is a
multi-modal transformer model that processes image, text,
and document layout information jointly. The overall archi-
tecture of the model is illustrated in Fig. 2. Given an in-
put patent figure I , the OCR text is extracted using off-
the-shelf Tesseract OCR engine (Kay 2007). The image is
then down-scaled to H ↑W and split into non-overlapping
patches of p dimensions each, resulting in M = HW/p

2

image patches. The OCR extracted text is tokenized using
the BPE tokenizer (Shibata et al. 1999) and represented us-
ing a learnable embedding matrix. Following (Huang et al.
2022), learnable 1D-position embeddings and 2D segment-
level layout-position embeddings are added to the word em-
beddings, resulting in the final text embeddings. The image
embeddings are created by linear projection of flattened im-
age patches and combining them with learnable 1D position
embeddings and 2D spatial embeddings. We use images of
size I ↗ R3→384→384, i.e., H = W = 384. With p = 16 this
results in M = 576 patches. The higher resolution helps
preserve intricate structural details of patent figures, such as
node labels and arrows.

Pre-training data and annotations: To enable large-
scale in-domain pre-training of PATENTMME, we crawled a

set of 900K+ patent figures corresponding to the patent IDs
from the Harvard USPTO Patent Dataset (HUPD) (Suzgun
et al. 2024). For a fair evaluation, appropriate care has been
taken to avoid any overlap of the sample with the validation
and testing split of our dataset.

For robust patent-figures’-specific pretraining, we define
loss functions that leverage patent diagram specific elements
like nodes, node labels, figure labels, text and arrows. To
extract such elements, we train a Faster-RCNN (Ren et al.
2015) based visual element detection network on 350 man-
ually annotated patent figures, sampled randomly from our
training data. The trained model is then used to infer ele-
ments from all training images, which is used to provide
weak ground-truth labels during PATENTMME training. We
show inference samples of this model in Appendix B.

Pre-training Loss Formulations: To enhance the vision
encoder’s capability in capturing fine-grained structural de-
tails of patent figures, we pre-train PATENTMME using
novel layout-aware masked image modeling (LAMIM) and
image patch classification (PC) objectives, along with the
established masked language modeling (MLM) loss. We de-
scribe these losses in the following text.
Notation: We use R and T to denote the set of image
patches (regions) and OCR tokens, respectively. Further,
Xm and Xum denote the masked and unmasked parts of the
modality X . The probability distribution generated by our
PATENTMME model and the set of categories of visual el-
ements that can be detected by our detection network by pω

and C, respectively.
(i) Masked Language Modeling (MLM). Similar to Lay-
outLMv3 (Huang et al. 2022), we randomly mask 30% of
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the OCR text tokens and optimize the model to predict the
masked tokens, encouraging it to learn patent-specific tex-
tual semantics. This loss is computed as follows:

LMLM (ω) = ↘
∑

i↑Tm

log pω(ti | Rum, Tum), (1)

where ti denotes the correct masked text tokens.
(ii) Layout-Aware Masked Image Modeling (LAMIM).
We utilize masked image modeling to learn visual repre-
sentations by randomly masking 40% of the image patches.
Since the patent figures are more sparse compared to dense
document images, we mask only the image patches that con-
tain atleast one of the following five elements: nodes, node
labels, figure labels, text and arrows. This strategy helps to
avoid masking blank regions in the patent figures, and hence
learn robust visual representations. Our formulation of the
LAMIM objective is similar to BEiT (Bao et al. 2022) and
therefore requires a discrete image tokenizer. We choose
OCR-VQGAN (Rodriguez et al. 2023) since its tokenized
image representation is capable of handling textual informa-
tion better than competing works dVAE (Ramesh et al. 2021)
and VQGAN (Esser, Rombach, and Ommer 2021). We com-
pute this loss as follows:

LMIM (ω) = ↘
∑

i↑Rm

log pω(ri | Rum, Tum), (2)

where pi denotes the correct masked image patches.
(iii) Patch Classification (PC). In this multi-label binary
classification objective, we classify each of the M image
patches into one or more of the following five categories:
node, node label, figure label, text, and arrows. This objec-
tive which is mathematically computed as follows, helps the
model learn discriminative representations for different vi-
sual elements in patent figures.

LPC = ↘ 1

M

M∑

i=1

|C|∑

j=1

[yij log(ŷij) + (1↘ yij) log(1↘ ŷij)] ,

(3)
where ŷij denotes the probability of patch i belonging to
class j, and yij is the binary ground truth label obtained us-
ing the visual element detector.

4.2 PATENTLLAMA: Description Generator

PATENTLLAMA is a domain-adapted version of the
LLaMA-2 7B model for the patent domain. We continue to
pre-train the LLaMA-2 7B model using LoRA (Hu et al.
2022) adapters, on the descriptions from HUPD patent
dataset (Suzgun et al. 2024), to bias the model to gener-
ate the language inherent to patent documents. To avoid any
train-test leakage, we ensure that we use the HUPD dataset
after removing patent documents corresponding to the vali-
dation and test splits of our PATENTDESC-355K dataset.

4.3 PATENTLMM

Inspired by recent multimodal LLM studies like MiniGPT-
4 (Zhu et al. 2024) and LLaVA (Liu et al. 2023, 2024a),
we integrate PATENTMME and PATENTLLAMA through a
single MLP network to exploit their pre-trained represen-
tations. The detailed architecture for PATENTLMM is il-
lustrated in Fig. 3. Given a patent figure, we first obtain
its layout-aware text and visual representations from frozen
PATENTMME. These representations are projected into the
input embedding space of PATENTLLAMA using a projec-
tion MLP, and the PATENTLLAMA is finetuned to maxi-
mize the likelihood of the corresponding description condi-
tioned on these projected representations.

5 Experiments

5.1 Experimental Setup

PATENTMME: PATENTMME is initialized with
LayoutLMv3-Large to inherit its document understanding
capabilities. For each of the three losses discussed in
Section 4, the text and image embeddings obtained from
PATENTMME are projected through separate MLPs (loss
heads) before the loss is calculated. Since the network
weights already have a good initialization, to prevent major
changes in weights of the multimodal transformer, we
adopt two-step training. During Step-1, the weights of the
multimodal transformer remain frozen and only the loss
heads are trained for 1 epoch with a higher learning rate
of 1e-3 and 1K warm-up steps to learn good initialization.
During Step 2, the entire model is trained end-to-end for
8 epochs with a lower learning rate of 5e-5 and with 10K
warm-up steps. The PATENTMME model is trained on
8↑V100 GPUs, with an effective batch size of 64 and
Adam (Kingma and Ba 2014) optimizer.

PATENTLMM: Following the standard practice (Liu
et al. 2024a), we train our PATENTLMM model in two
stages. To align the patent figure representations ob-
tained from PATENTMME with the input latent space of
PATENTLLAMA, we train only the projection layer in
the first stage, keeping all other parameters frozen. Dur-
ing stage 2, we add LoRA adapters to all the linear lay-
ers of the PatentLLaMA module, except for the language
modeling head, whose weights remain frozen. The weights
of PATENTMME are kept frozen throughout. We train
our PATENTLMM with an effective batch size of 192 on
3↑A100 GPUs (40 GB). Stage 1 training progresses at a
higher learning rate of 1e-3, and stage 2 training takes place



Table 2: Quantitative results on PATENTDESC-355K (test set) for brief and detailed description generation (B=BLEU,
R=ROUGE, M=METEOR). Number in parenthesis under # Parameters column denote number of trainable parameters.

Setup Method # Parameters B-2 B-4 Avg. B R-1 R-2 R-L M B-2 B-4 Avg. B R-1 R-2 R-L M

Brief Detailed
Ze

ro
-s

ho
t

BLIP-2 2.7B 1.01 0.03 1.62 15.43 1.70 12.47 6.72 0.00 0.00 0.01 3.24 0.49 2.84 1.00
TextMonkey 9.8B 0.91 0.11 1.12 13.00 4.60 12.16 7.14 0.10 0.03 0.10 6.18 2.38 4.83 2.64
PEGASUS 568M 3.18 0.13 4.20 14.68 2.33 11.46 13.24 0.86 0.04 1.12 12.26 1.96 9.47 5.18
mPLUG-owl2 7.5B 3.64 0.36 4.47 21.47 5.10 19.41 13.07 3.65 0.49 3.40 23.75 5.39 14.85 11.83
UReader 7.2B 3.54 0.35 4.50 20.90 4.56 17.85 13.45 0.05 0.01 0.06 5.15 1.54 4.49 2.04
LLaVA-1.5 7.4B 4.52 0.24 4.71 17.59 3.27 14.63 15.74 3.65 0.37 3.36 23.75 4.63 14.71 11.69
GPT-4V Unknown 20.74 8.56 18.68 36.07 15.65 31.89 32.88 19.61 6.05 18.26 39.95 12.14 20.16 27.31

Fi
ne

tu
ne

d

Pegasus 568M 2.44 0.14 4.03 13.86 1.55 11.52 11.62 5.80 0.41 6.33 19.28 2.24 15.27 12.11
GIT 681M 26.95 15.33 24.78 45.28 27.17 42.29 44.27 6.33 1.18 6.23 13.66 3.17 10.87 10.68
BLIP 252M 24.62 12.52 22.40 42.59 23.78 39.16 42.84 5.45 1.05 5.31 12.42 2.89 9.46 9.55
MiniGPT-4 7.8B (3.2M) 30.57 17.96 28.13 43.53 25.33 40.35 43.03 11.01 2.81 10.26 28.91 6.23 15.67 16.65
OFA 472M 33.01 21.76 31.24 54.26 37.94 51.47 44.89 15.76 7.23 14.93 33.20 13.70 22.89 21.17
LLaVA-1.5 7.4B (341M) 36.64 25.00 34.37 48.92 32.01 45.87 48.23 20.90 11.12 19.81 36.86 15.68 24.48 24.71
PATENTLMM 7.4B (341M) 46.40 36.66 44.59 56.68 42.63 54.18 56.44 25.42 15.02 24.24 40.70 19.27 27.54 28.39

at a learning rate of 2e-4 with a cosine schedule, for 12K
steps using Adam optimizer. We train separate LMMs for
brief and detailed descriptions.

Overall, training PATENTLMM is a three-phase process.
Firstly, we train the PATENTMME encoder in a semi-
supervised fashion by leveraging a vast amount of patent
figures corresponding to patents in the HUPD dataset. Sec-
ondly, we domain-adapt the LLaMA-2 7B model on the
HUPD patent text data to create PATENTLLAMA. Lastly,
we integrate PATENTMME and PATENTLLAMA to create
PATENTLMM, and train it following the two-stage process.

5.2 Baselines

We benchmark the performance of various baselines on our
proposed PATENTDESC-355K dataset in the zero-shot and
fine-tuned setup. We benchmark the text-only baseline Pe-
gasus (Zhang et al. 2020) by generating patent figure de-
scriptions from OCR tokens extracted from patent figures.
For image captioning baselines, we study the state-of-the-art
models GIT (Wang et al. 2022a), BLIP (Li et al. 2022) and
OFA (Wang et al. 2022b). We further compare our method
with recent multimodal LLMs such as UReader (Ye et al.
2023a), TextMonkey (Liu et al. 2024b), mPLUG-owl2 (Ye
et al. 2024), BLIP-2 (Li et al. 2023), MiniGPT-4 (Zhu et al.
2024), LLaVA-1.5 (Liu et al. 2024a) and the closed GPT-
4V model (Achiam et al. 2023). GPT-4V prompt is listed in
Appendix C.3.

To measure the description generation performance of
these models, we use standard image captioning metrics
such as BLEU (Papineni et al. 2002), ROUGE (Lin 2004)
and METEOR (Banerjee and Lavie 2005). Higher values
for all the scores are desired. A detailed description of these
metrics is provided in Appendix C.1.

5.3 Results and Discussion

The quantitative performance comparison for the brief and
detailed description generation task is reported in Table 2.
In the zero-shot setting, GPT-4V demonstrated superior per-
formance among baselines across all metrics, significantly

outperforming other baselines owing to its large scale and
the diverse data it has seen during its pre-training. The poor
zero-shot performance of other baselines highlights the gap
in their pre-training data and the nature of patent figures
and descriptions. The fine-tuned models outperform their
zero-shot counterparts, highlighting the importance of task-
specific training for these models. MiniGPT-4 and LLaVA-
1.5 utilize a frozen pre-trained ViT trained on web-scale
natural images, which results in suboptimal representation
of patent figures. Similarly, OFA also enforces these priors
by utilizing a pre-trained discrete image tokenizer. On the
other hand, PATENTLMM gives a boost of → 8% across all
metrics, signifying the importance of better domain knowl-
edge embedded in it through the proposed PATENTMME
pretraining and PatentLLaMA.

Similar to brief description generation, GPT-4V outper-
formed all other baselines for the detailed description gener-
ation task in the zero-shot setting. We observe that majority
of the baselines struggle with performance in the zero-shot
setup. In the fine-tuned setting, our PATENTLMM main-
tained its superior performance, achieving the highest scores
across all metrics. This consistent top performance for both
brief and detailed descriptions suggests the efficacy of our
proposed approach for the task of generating descriptions
from patent figures. The overall lower scores for detailed
descriptions can be attributed to their comprehensiveness,
complexity, and length, requiring models to capture and gen-
erate more nuanced and detailed information.

Ablations: We perform the following three ablation stud-
ies to quantify the impact of different components of our
proposed PATENTLMM model:
(i) PATENTMME Pre-training objectives: Table 3 shows
the ablation results with combinations of pre-training objec-
tives for the brief description generation. We observe that
using a combination of MLM and LAMIM leads to better re-
sults compared to the pre-trained LayoutLMv3. Further, the
PC loss also improves the performance of the model, when
pre-trained with HUPD images data. A similar ablation for



Table 3: Ablation study to quantify the impact of pre-
training objectives of PATENTMME on the overall perfor-
mance of PATENTLMM on brief descriptions generation
task. All models are trained with PATENTLLAMA.

Pre-training B-2 B-4 Avg. B R-1 R-2 R-L M

Pretrained LayoutLMv3 42.81 32.50 40.86 53.68 38.88 51.07 53.34
w/ MLM + LAMIM 45.24 35.33 43.39 55.69 41.38 53.20 55.34
w/ MLM+LAMIM+PC 46.39 36.65 44.59 56.68 42.62 54.18 56.44

Table 4: Ablation study to quantify the importance of OCR
tokens on the overall performance of PATENTLMM on brief
descriptions generation task.

OCR in

training?

OCR in

Inference?

B-2 B-4 Avg. B R-1 R-2 R-L M

No No 30.32 19.17 28.30 41.61 25.21 38.95 41.46
Yes No 11.51 2.77 9.83 24.38 7.92 21.68 22.52
Yes Yes 46.40 36.66 44.59 56.68 42.63 54.18 56.44

detailed descriptions is reported in Appendix C.2.
(ii) Importance of OCR tokens: In this ablation, we study
whether avoiding passing OCR tokens to PATENTLMM
causes any drop in the performance of brief description
generation. We experiment with two ablations: (1) OCR
tokens are used for PATENTMME pretraining but not for
PATENTLMM training, and (2) OCR tokens are used for
PATENTMME pretraining and for PATENTLMM training
but not at inference time. Table 4 shows that it is important
to use OCR tokens in the entire pipeline for the best results.
(iii) PatentLMM Training: We report an additional abla-
tion study in Appendix C.2 to quantify the advantage of us-
ing PatentLLaMA against the pre-trained LLaMA model.

Qualitative Analysis: Fig. 1 shows an example brief and
detailed description generated by PATENTLMM for a test
sample. The generated brief description, more specifically,
terms the electronic device shown in the image as a mobile
smartphone. The generated detailed description provides a
comprehensive overview of the electronic device 104, its
components, and their functions. It covers most of the key el-
ements mentioned in the ground truth, including the proces-
sor 114, the memory 116, the display 118, and the user inter-
face 122. However, there are some omissions, like Graphics
Component 154 and Communication Component 150. More
case studies are provided in Appendix D.
Error analysis: We perform a thorough manual error analy-
sis on a set of 50 samples drawn from our test set to identify
some prominent errors in the descriptions generated by our
PATENTLMM model. We identify five main error categories
as follows. (i) Hallucination in figure labeling occurs in 3
brief and 3 detailed descriptions. (ii) Hallucination in 4 brief
descriptions and 7 detailed descriptions was due to little or
no OCR detectable text in the figures. (iii) Incorrect asso-
ciation of node labels occurs when the wiggly arrows con-
necting node labels to respective nodes are misinterpreted
or ignored due to downsampling of the image before being
passed to PATENTMME. This was observed in 10 detailed
descriptions. (iv) A similar misinterpretation due to down-

Table 5: GPT-4V evaluation on a set of 1K samples.

Description Method Rel. Acc. Compl. Coh. Fluency Cover.

Brief
LLaVA-1.5 1.38 1.06 1.01 1.85 1.98 0.98

Ours 1.44 1.18 1.17 1.91 2.00 1.15

Detailed
LLaVA-1.5 0.75 0.75 0.73 1.07 1.69 0.71

Ours 0.90 0.78 0.76 1.15 1.85 0.75

sampling is often the cause of hallucinated node labels in 12
detailed descriptions. (v) Cross-figure references in the de-
scriptions establish the interconnection between various as-
pects and provide a complete picture of the presented techni-
cal invention. The figures may be related hierarchically (sys-
tems vs components), sequentially (steps of a process), dif-
ferent views (top-bottom-left-right), or in other ways. Since
we train PATENTLMM to generate descriptions for individ-
ual patent figures, our model hallucinates the cross-figure
references for 2 brief and 5 detailed descriptions. Qualita-
tive examples are presented in Appendix D.2.
GPT-4V Evaluation Results: Apart from small-scale man-
ual error analysis, we utilize the GPT-4V model to qualita-
tively evaluate the performance of LLaVA-1.5 and our pro-
posed PATENTLMM model on the brief and detailed de-
scription generation task for a set of 1000 samples. We input
the GPT-4V model with the patent figure, the ground truth
description and the description generated using these mod-
els, along with the special instruction prompt. The instruc-
tion prompt instructs the GPT-4V model to rate the gener-
ated description on the following criterion: Relevance, Ac-
curacy, Completeness (with respect to input image), Fluency
and Coverage (with respect to input image and ground truth
description) on an integer scale of 0 to 2. To mitigate ran-
domness in scores, we set the temperature parameter to 0 for
the GPT-4V model and created five versions of the instruc-
tion prompt. The scores obtained from each of the prompts
for each criterion are then averaged. Table 5 shows that our
system generates high-quality results.

6 Conclusion and Future Work

Our work addresses the existing gap in the automated
generation of patent figure descriptions by introducing
PATENTDESC-355K, a comprehensive dataset of patent fig-
ures and their corresponding brief and detailed descrip-
tions. We further proposed PATENTLMM, a large multi-
modal model comprising a domain-specialized image en-
coder PATENTMME and a domain-adapted patentLLaMA
model for generating brief and detailed descriptions from
patent figures. Extensive experiments demonstrated that our
proposed PATENTLMM outperforms competent baselines
by significant margins. Future research in this direction
can explore experiments with patents in multiple languages,
patent document-level reasoning to allow for cross-figure
references while generating descriptions, incorporating ex-
ternal knowledge bases from technical domains to improve
the performance of detailed description generation, and gen-
eration of grounded descriptions.
Acknowledgements: This work was supported by the Mi-
crosoft Academic Partnership Grant (MAPG) 2023.
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Supplementary material for PATENTLMM: Large Multimodal Model for

Generating Descriptions for Patent Figures

A PATENTDESC-355K

A.1 Dataset Curation

To create a comprehensive dataset, we crawled a diverse
set of over 90K US patent documents published between
1900 and January 2023. This involved searching for vari-
ous companies on Google Patents and downloading respec-
tive CSV files, with detailed relevant patent metadata like
ID, assignee, publication date, patent URLs, etc. We use the
patent-ids and URLs to download the HTML documents.
We parsed these HTML documents to extract the image
URLs, and downloaded →900K images, ensuring a rich and
representative corpus of technical illustrations. In the fol-
lowing sections, we describe the preprocessing and descrip-
tion extraction stages:

Pre-processing of Patent Images We manually analyzed
a random set of 500 patent images from our collection, and
encountered considerable noise attributed to the vast diver-
sity. To alleviate this noise, we implemented a series of fil-
tering steps as follows.

1. Correcting Image Orientation: We identified that
→40% of the analysed images were vertically oriented.
To rectify this automatically, we compared the average
length of OCR tokens extracted using PaddleOCR (Du
et al. 2021) for the original image and the 90→-rotated
image, and saved the image with greater average OCR
length.

2. Redundancy Removal: We eliminated the first occur-
rence of representative figure images, which were re-
peated twice for each patent.

3. Discarding Multi-Figure Images: Around 7% of the
analysed images had multiple figures per image. To
maintain a focus on singular representative visuals per
image, we extract figure labels using PaddleOCR (Du
et al. 2021). Then, we remove a small proportion of im-
ages containing multiple occurrences of figure labels.

4. Graph/Plot/Chart Removal: Around 5% images in
our analysed data depicted graphical plots. Prior
works (Tang, Boggust, and Satyanarayan 2023; Mahin-
pei, Kostic, and Tanner 2022; Masry et al. 2022; Liu et al.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2023) have studied their captioning in detail through spe-
cialized handling, so we discard these images by training
a ResNet-50-based binary classifier on a subset of 300
manually annotated images, achieving a 98% validation
accuracy.

5. Publication Date Filtering: We observed a specific con-
vention in HTML tags for patents published after 2004.
So, to ensure consistency in HTML tags for easier de-
scription extraction, we discarded patents published be-
fore 2005. This resulted in our final set of patents pub-
lished from Jan 2005 to Jan 2023.

After these image-based pre-processing steps, we end up
with a final set of →429K images corresponding to →64K
unique patents.

Extracting Descriptions of Patent Figures We obtain the
brief and detailed descriptions for each image from the cor-
responding patent HTML document as follows. We first ex-
tract figure labels from the images utilizing PaddleOCR (Du
et al. 2021). Next, we extract the content within the brief-

description-of-drawings tag in the HTML. Within this tag,
there is a child description-line or description-paragraph tag
corresponding to every image. Hence, for each image, using
its figure label, we extract the text enclosed within the cor-
responding description-line or description-paragraph tag as
its brief description.

For detailed descriptions, we consider the paragraphs
falling after the brief-description-of-drawings tag. For each
new description-line/description-paragraph tag, we check if
its first sentence contains the figref tag. If yes, the tag text is
attributed to the referred figure, else we append the tag text
to the previously referred figures’ description. In rare cases,
if the OCR extracts incorrect figure labels, we cannot obtain
descriptions for such images and hence we exclude such im-
ages from our dataset. Overall, this leads to our final dataset
with →355K images spanning →60K patent documents.

A.2 Quality Assessment for the Proposed

PATENTDESC-355K

To assess the quality of our automatic description extrac-
tion heuristics, we manually annotated a random set of 100
patent images with their brief and detailed descriptions and
computed the sentence-level precision and recall of the ex-
tracted descriptions against the ground-truth descriptions.
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Figure 1: PATENTDESC-355K Analysis. (a) and (c): Word clouds of most common occurrences in brief and detailed descrip-
tions respectively. (b) and (d): frequency distribution of description lengths for the brief and detailed descriptions respectively.

Brief - FIG. 10 illustrates an example 
process for video content erasure in 
accordance with various embodiments;

Detailed - FIG. 10 illustrates an example 
of inpainting applied to the input video of 
FIG. 7. Within video frame 702, the 
desirable content of a unicorn 704 and 
undesirable content of a gun in hand 706 
is discernible. The content filter performs a 
step of segmentation 1008 of the 
undesirable feature. A representation of 
the segmented video frame shows 
boundaries 1012 of the regions of 
undesirable content. The content filter 
performs a step of erasure 1014. A 
representation of the video frame with the 
undesirable content erased 1016 shows 
the segmented boundary with the pixels of 
the erased undesirable content shown in 
black 1018. Next, the filter performs a step 
of inpainting 1020. This is possible using 
various image inpainting techniques…

Brief - FIG. 2 illustrates an alternative 
embodiment of an indexing system that 
further includes a scheduling component 
for scheduling work to the resources.

Detailed - FIG. 2 illustrates an alternative 
embodiment of an indexing system 200 
that further includes a scheduling 
component 202 for scheduling work to the 
resources. The scheduling component 202 
assigns segments to worker threads 
according to load balancing across on the 
resources. The load balancing can be 
based on segment size and the number of 
the worker threads. The worker threads 
can work on the same or different 
segments concurrently.Put another way, 
the system 200 comprises the access 
component 102 that accesses a datastore 
204 to obtain the list of partitions 106 and 
corresponding segments 104 as part of 
processing a query. The datastore 204 can 
be a column store and/or a row…

Brief - FIG. 12 illustrates an example 
network-based RVE environment, 
according to at least some embodiments.

Detailed - Referring to FIG. 12, in at least 
some embodiments, data including but not 
limited to video content may be streamed 
from the streaming service interface 2520 
to the RVT/E client 2582 according to a 
streaming protocol. In at least some 
embodiments, data including but not 
limited to user input and interaction may 
be sent to the streaming service interface 
2520 from the RVT/E client 2582 
according to the streaming protocol. In at 
least some embodiments, the streaming 
service interface 2520 may receive video 
content (e.g., rendered video frames) from 
a video playback module (not shown) 
and/or from a rendering 2560 module, 
package the video content according to 
the streaming protocol, and stream the 
video according to the protocol to…

Brief - FIG. 9 is an example audio device 
that has a remotely resettable mechanical 
disconnect for privacy.

Detailed - FIG. 9 is an example of an 
alternate airgap mechanism for an audio 
device. Audio device 900 has many similar 
features of the audio device 700 as shown 
in FIG. 7, shown with similar numbers, i.e., 
yoke 901 with holes 903, volume control 
902, 904, privacy LED 905, LED array 
906, etc. Additionally, the audio device 900 
may be capable of remotely re-setting the 
privacy mode. The audio device 900 may 
include an airgap switch 929. The airgap 
switch 929 may be a remote reset rocker 
switch, i.e., a remote reset switch, which 
may be located on a front surface 915 of 
the audio device 900 and accessible to a 
user. For example, the airgap switch 929 
may be a rocker switch that turns privacy 
mode on and off when a user flips or 
actuates the airgap switch…

Figure 2: Samples from our PATENTDESC-355K dataset showing ↑patent figure, brief description, detailed description↓ triplets.

For brief descriptions, both precision and recall scores were
100%. This is expected since brief descriptions span sin-
gle tags, making their rule-based extraction and OCR-based
matching almost error-free. For detailed descriptions, the ex-
tracted descriptions match with the ground truth with a pre-
cision of 90.81% and a recall of 91.96%. Through manual
analysis, we identified two primary reasons for the lower
scores on detailed descriptions: (a) for the last referred fig-
ure in the HTML, sometimes the description includes con-

cluding paragraphs not specifically relevant to the figure, re-
ducing the precision of the descriptions for such figures; (b)
some sentences in the description contain references to mul-
tiple figures. In this paper, we study the problem of gener-
ating descriptions for individual figures. Hence, we discard
such sentences, leading to slightly lower recall for those fig-
ures. Finally, to establish a consistent evaluation framework
across baselines with varying context windows, we clip the
detailed descriptions to 500 tokens.



Figure 3: Annotations of patent image elements obtained using our visual element detection model on a selection of test samples.

Overall, the quality of the proposed dataset is robust, with
high precision and recall scores for brief descriptions and
slightly lower but still strong scores for detailed descrip-
tions.

A.3 Dataset Analysis and Examples

Fig. 1(a) and (c) illustrate the word clouds of the most fre-
quent words in brief and detailed descriptions, respectively.
Further, Fig. 1(b) and (d) show the frequency distribution of
description lengths for the brief and detailed descriptions,
respectively.

Fig. 2 shows a selection of example samples – ↑patent
figure, brief description, detailed description↓ from our
PATENTDESC-355K dataset.

B Details on patent Visual Element Detector

We manually annotated 400 patent images sampled ran-
domly from our training data. The annotations were in the
form of bounding boxes for the following five categories:
nodes, node labels, text, arrows, and figure labels. We split
this dataset into a training split consisting of 350 samples
and a test split consisting of 50 samples. We then use the
training split to fine-tune a F-RCNN (Ren et al. 2015) model
with ResNet101 (He et al. 2016) backbone, pre-trained on
the MS-COCO dataset. We finetune this model with a learn-
ing rate of 1e-4 until convergence. This helps us obtain an
AP@50 score of 92.52, and an AP@75 score of 64.34 on
the test set. We show a few examples of the annotations ob-
tained using the trained network in Fig. 3.

C Additional Experiments and Details

C.1 Evaluation Metrics

To measure the description generation performance, we use
the standard image captioning metrics such as BLEU (Pa-

pineni et al. 2002), ROUGE (Lin 2004) and ME-
TEOR (Banerjee and Lavie 2005). Higher values for all the
scores are desired.
BLEU-n (Papineni et al. 2002) calculates the n-gram over-
lap between the generated and reference texts, taking into
account precision with which captions are generated, and a
brevity penalty for shorter texts. We report BLEU-2, BLEU-
4 and Avg. BLEU for all our experiments. The Avg. Blue
score averages BLEU-1, BLEU-2, BLEU-3 and BLEU-4
metric.
ROUGE (Lin 2004) also measures the overlap between
the generated and reference texts. ROUGE-N measures N-
gram overlap while ROUGE-L measures the overlap based
on the longest common subsequence between the generated
and reference texts. We report ROUGE-1, ROUGE-2 and
ROUGE-L for our experiments.
METEOR (Banerjee and Lavie 2005) is computed based
on the explicit word-to-word matches between the generated
and reference texts. It considers not only exact word matches
but also stem, synonym, and paraphrase matches, as well as
applies weighted penalties for incorrect word order.

C.2 Additional Ablations

PATENTLMM Training: Table 1 shows the ablation re-
sults with different design choices for training of the de-
coder LLM of PATENTLMM for the brief description gen-
eration task. We show results without stage 2 training of
the PATENTLMM (rows 1 and 3). We also show results
when the decoder LLM is initialized using LLaMA-2 versus
PATENTLLAMA. We observe that stage-1 training is clearly
not enough and the decoder LLM needs to be finetuned for
the patent description task to generate reasonable descrip-
tions. We also observe that using PATENTLLAMA leads to
significantly better results compared to just using the stan-
dard LLaMA-2 model. This shows that domain adaptive pre-



Table 1: Ablation study to quantify the impact of the de-
coder LLM on the overall performance of PATENTLMM
on brief descriptions generation task. We report the results
of PATENTLMM with PatentMME vision encoder, at both
stages of training.

Stage LLM Init. B-2 B-4 Avg. B R-1 R-2 R-L M

1 LLaMA-2 1.06 0.02 1.58 6.70 0.86 5.84 10.04
2 LLaMA-2 43.54 33.50 41.66 54.35 39.76 51.81 53.82
1 PATENTLLAMA 1.08 0.02 1.61 7.08 0.87 5.99 10.32
2 PATENTLLAMA 46.39 36.65 44.59 56.68 42.62 54.18 56.44

Table 2: Ablation study to quantify the impact of pre-
training objectives of PATENTMME on the overall perfor-
mance of PATENTLMM on detailed descriptions generation
task. All models are trained with PATENTLLAMA.

Pre-training B-2 B-4 Avg. B R-1 R-2 R-L M

Pretrained LayoutLMv3 23.84 13.84 22.73 39.28 18.06 26.44 27.04
w/ MLM+LAMIM+PC 25.42 15.02 24.24 40.70 19.27 27.54 28.39

training with HUPD patent text is important for better per-
formance.

Pre-training ablation of PatentMME for detailed de-

scription: In Table 2, we observe that using a combina-
tion of MLM, LAMIM and PC losses leads to better results
compared to the pretrained LayoutLMv3. Thus, domain spe-
cific pre-training with HUPD image data is helpful even for
detailed description generation.

C.3 Evaluation of GPT-4V as a baseline

We utilize the following prompt to evaluate the patent de-
scription generation capabilities of the GPT-4V model as
one of the baselines in the zero-shot setting.
System Prompt: You have been hired to
draft patents for the world’s largest
companies. Your primary task is to
help your company in drafting patent
documents.
User Prompt: You will be provided with
a figure which will be part of a new
patent that your company is planning to
file. Your task is to generate a brief
description for the patent figure and
it will be used as a part of the patent
document, and will be included under
the ‘BRIEF DESCRIPTION OF THE DRAWINGS’
section of the patent document.

IMAGE:#image url#

Output the brief desctiption in
<results></results> tag.
Please note that the provided prompt generates brief descrip-
tions. For detailed descriptions, we simply replace all occur-
rences of “brief” with “detailed” in the prompt.

C.4 Using GPT-4V for qualitative evaluation

For evaluating the quality of the brief and detailed descrip-
tions generated by our PATENTLMM model, we utilize
GPT-4V as an evaluator. More specifically, we provide the
GPT-4V model with the patent image, the ground truth de-
scription, and the description generated using our model.
These inputs are accompanied by a prompt that instructs the
GPT-4V model to rate the generated description against the
ground truth by giving it an integer score from 0, 1, 2. We
use the following prompt to accomplish this:
System Prompt: You are a helpful
legal assistant that has been hired to
quantitatively evaluate the quality of
brief descriptions of patent figures
generated from a black-box system,
against the original brief description
and the image of the patent figure.
User Prompt: You are acting as a
critical assistant to a patent
examiner. We have developed a model
that creates both detailed and brief
descriptions from images, and we
seek your expertise to evaluate the
quality of these generated outputs.
Your evaluation should focus on the
following criteria:
Relevance: The degree to which the
description corresponds with the
content of the image.
Accuracy: The correctness of the
specific details provided in the
description.
Completeness: The extent to which the
description addresses all significant
elements of the image.
Coherence: The logical consistency,
clarity, and readability of the
description.
Fluency: The grammatical and stylistic
quality of the text, ensuring it reads
smoothly.
Coverage: Whether the generated
description adequately covers the
essential concepts from the ground
truth text or image.

You will be given the image, the
reference ground truth description,
and the description generated by the
model. Please provide an integer score
of 0, 1, or 2 for each criterion,
with 0 indicating worse performance, 1
indicating reasonable, and 2 indicating
the perfect score.

Keep in mind that while the generated
description may not exactly match
the ground truth, it should still
faithfully represent the content of



the image. Pay close attention to
the patent figure when making your
assessments.

Ensure that your output is formatted
as follows:
Relevance: <your score>
Accuracy: <your score>
Completeness: <your score>
Coherence: <your score>
Fluency: <your score>
Coverage: <your score>

IMAGE:#img url#
GROUND TRUTH:#gt desc#
GENERATED DESCRIPTION:#gen desc#

Output the scores for each metric
in the prescribed format in
<results></results> tag.

We replace all the instances of “brief” with “detailed” in
the System Prompt to evaluate the detailed descriptions gen-
erated by our PATENTLMM.

D Additional Qualitative Analysis

D.1 Case Studies

We perform rigorous case studies by carefully going through
randomly chosen 8 patent images and their corresponding
brief and detailed descriptions generated by our approach,
critically comparing them against respective ground truths.
We summarize our observations for all these examples in the
following text:

In Fig. 4, the generated brief description accurately de-
scribes the flowchart as a method for providing the decision
of a priority arbiter in a network device for forwarding an in-
coming packet. The generated detailed description provides
a comprehensive breakdown of the flowchart steps, such as
receiving an incoming packet at a network device, classify-
ing the packet for processing by VRF subsystems, process-
ing the packet and generating action codes, generating deci-
sions using priority arbiters, selecting a particular priority ar-
biter and providing a decision for forwarding the packet. Al-
though the steps and their purposes are described accurately
in the generated description, however, when compared to the
ground truth detailed description, the generated description
is missing reference to Figs. 3 and 4 (cross-figure references)
of the same patent. This is because our PATENTLMM is
trained to describe each patent image independently, limit-
ing the model’s ability to draw connections between related
images within the same patent document.

In Fig. 5, the generated brief description is more specific
compared to the ground truth by mentioning ’property page’,
but loses its overall meaning by not talking about ’user
profile data’. The generated detailed description provides a
comprehensive explanation of the flowchart, covering all the
steps shown. It accurately describes the process of detecting
user interactions, analyzing content, examining user profile
data, generating a user interface with suggestions, and up-

dating the user profile. When compared, the generated and
ground truth descriptions mostly differ in their language and
level of details only.

In Fig. 6, the generated brief description focuses on us-
ing a network service for sharing spreadsheet objects, which
aligns well with the ground truth. The generated detailed de-
scription provides a fairly comprehensive overview of the
system’s components and their interactions like the sharing
manager 26, the web browser 222, the application 224, the
user interface 216, etc. However, it does not provide as much
context on the types of computing devices and network con-
figurations that can be used in the system, unlike the ground
truth. Moreover, the term ’codeless sharing’, a concept cen-
tral to the ground truth, is omitted in the generated descrip-
tions.

In Fig. 7, the generated brief description correctly de-
scribes the flowchart as a method for checking open orders
in a stock, which aligns well with the ground truth’s em-
phasis on viewing open order status. The generated detailed
description demonstrates a comprehensive understanding of
the process flow, accurately describing key steps such as
selecting open orders function, displaying the list of open
orders, selecting a particular stock, highlighting orders for
possible actions, selecting operations like cancel, change,
or replace, and populating a trade ticket with information.
When compared to the ground truth, some cross-figure ref-
erences are absent in the generated description. It is however
commendable how our PATENTLMM successfully captured
the unusual flow indicated by arrows and node labels in this
figure despite the downsampling of the image before being
passed to the model.

In Fig. 8, the generated brief description accurately iden-
tifies the block diagram as a KPI management system. The
generated detailed description further captures many key el-
ements correctly. These include the server 120, the applica-
tion component 110, the interface component 120 and the
KPI definition component 134. The generated description
however does not mention the data source 130 and the data
132 components shown in the patent figure. Moreover, the
description of the capabilities of the server 120 and the na-
ture of the databases 130 is less detailed in the generated
description compared to the ground truth.

In Fig. 9, the generated brief description correctly identi-
fies the image as a block diagram illustrating a VMM (Vir-
tual Machine Manager) pool with dedicated hardware re-
sources. The generated detailed description captures many
system components accurately including the hardware re-
sources 202, the load balancer 206, the cloning manager
152, the VM pool 204 and the VMM 102. While our model
accurately describes these components in detail, it incor-
rectly identifies the system as 200 instead of 300. This
misidentification likely stems from the model observing
other node labels in the diagram that start with 2 (such as
202, 204, 206, 208, 214) and erroneously extending this pat-
tern to the overall system number.

In Fig. 10, the generated brief description accurately cap-
tures the general idea of a content delivery system. The gen-
erated detailed description correctly identified many com-
ponents like the client 205, the content sources 290A-290N,



direction 810, source 815, schedule 820, reports 825, and
phase 830. The description further elaborates on some of
these components. However, the generated description fo-
cused more on the configuration of various components for
monitoring and diagnostics, while the ground truth empha-
sized on download behaviors and content delivery methods.

In Fig. 11, the generated brief description, though less
comprehensive compared to ground truth, correctly identi-
fies the image as a schematic overview of a system for pro-
viding rack configuration to a device. The generated detailed
description accurately lists the main components of the sys-
tem such as the device discovery module 140, the rack man-
agement module 160, the rack management communication
interface (150), the user interface module (130) and the ex-
amples of managed devices 170 (servers, switches, routers).
When compared, the generated and ground truth descrip-
tions mostly differ in their level of details for certain com-
ponents.

D.2 Failure Cases

Fig. 12 demonstrates a few failure cases that occur in the
brief descriptions generated by our PATENTLMM model.
Specifically, Fig. 12(a) corresponds to the case when the
model confuses the OCR (reads Fig 20 as 2C) and gener-
ates the figure label incorrectly, Fig. 12(b) demonstrates a
case when the model hallucinates reference to another fig-
ure of the same patent (also discussed for detailed descrip-
tion for case study 1 (Fig. 4) in section D.1), and Figs. 12(c)
and (d) demonstrate the case when the model hallucinates
the description due to negligible OCR-detectable text in the
figure.

These three error categories are also encountered in de-
tailed descriptions generated by our model. Additionally, we
identify two more failure cases in the detailed descriptions
generated by our PATENTLMM model, as shown in Fig. 13,
which occurs when the node labels are associated incorrectly
with concepts presented in nodes, and in Fig. 14, which hap-
pens when the model hallucinates node labels. These cases
usually occur due to the distortion of node labels or wiggly
arrows connecting the nodes and node labels, during down-
sampling of images before being passed to PatentMME.

E Future directions to mitigate failures

In this section, we describe potential approaches to address
the observed failure cases in our model’s generated descrip-
tions. Specifically, we focus on reducing hallucinations and
inaccuracies arising from missing contextual information,
including figure references and technical details.
Document-level Reasoning for better Cross-Figure Ref-

erences Our analysis reveals that the model occasionally
hallucinates cross-figure references (as illustrated in our
case studies (Appendix D.1)), particularly when an inven-
tion’s component is illustrated across multiple diagrams. To
mitigate this issue, we propose enhancing document-level
reasoning by linking interdependent figures throughout the
patent document. By enabling the model to track and recon-
cile components and their relations across multiple figures,
we can ensure that figure references are more accurate and
context-aware.

Incorporation of External Knowledge Bases When key
textual cues are absent or insufficient within a given figure,
the model may hallucinate technical details. To address this
limitation, we suggest integrating external technical knowl-
edge sources—such as domain-specific knowledge bases or
authoritative patent databases—into the generation process.
By drawing on these external resources, the model can re-
trieve and incorporate accurate relevant information rather
than hallucinating it. To this end, techniques inspired by
Retrieval-Augmented Generation (RAG) can be employed
to query large, domain-specific repositories and return the
most relevant knowledge snippets. This retrieval step pro-
vides a verifiable grounding for the generated descriptions,
significantly reducing the likelihood of hallucinated techni-
cal content.
Grounded Description Generation Combining the above
strategies can lead to a unified approach for grounded de-
scription generation, where figure content is consistently
anchored to both internal textual references and external
knowledge bases. By ensuring that each descriptive element
corresponds to verifiable information, we can produce more
reliable, less hallucinated, and overall higher-quality figure
descriptions. This combination of document-level reasoning
and external resource integration is a crucial step towards
generating robust and trustworthy descriptions of patent fig-
ures.



Generated Brief and Detailed Descriptions Ground Truth Brief and Detailed Descriptions

FIG. 9 illustrates a flowchart of a method for providing a 
decision of a priority arbiter in a network device for forwarding 
an incoming packet according to some embodiments of the 
present disclosure.

FIG. 9 illustrates a computer implemented method for packet 
forwarding using multiple priority arbiters in one embodiment 
of the disclosed technologies;

FIG. 9 illustrates a flowchart of a method 900 for providing a 
QoS arbiter in a VRF subsystem. In one embodiment, method 
900 may be performed by an INE 204.At step 902, an 
incoming packet is received at a network device. In one 
embodiment, the network device is a network processor.At 
step 904, the incoming packet is classified for processing by 
one of a plurality of VRF subsystems. In one embodiment, the 
classification is performed by a traffic manager.At step 906, 
the incoming packet is processed and the action codes 
generated by multiple packet processors of the VRF 
subsystem are provided to a plurality of priority arbiters. In 
one embodiment, the priority arbiters are implemented in 
hardware.At step 908, a plurality of decisions are generated 
by the plurality of priority arbiters using a mapping of the 
action codes to a set of priorities associated with each priority 
arbiter. In one embodiment, the mapping is static.At step 910, 
a particular priority arbiter from the plurality of priority arbiters 
is selected based on an association of the VRF subsystem 
with the particular priority arbiter. In one embodiment, the 
priority arbiter is selected based on the priority associated 
with the VRF subsystem.At step 912, the decision is provided 
as an output decision for forwarding the incoming packet. In 
one embodiment, the output decision is provided to the traffic 
manager. In one embodiment, the output decision is provided 
to the VRF subsystem.

FIG. 9 illustrates a computer implemented method 900 for 
packet forwarding using multiple priority arbiters in one 
embodiment of the disclosed technologies. The method 900 
may be performed by the network device 300 as discussed 
with reference to FIG. 3.In step 902, an incoming packet may 
be received by a network device. As discussed with reference 
to FIG. 3, the network device 300 may receive the incoming 
packet 112 via the input interface 302. In some 
implementations, the incoming packet 302 may include only 
parts of the header. For example, the header may include 
source and destination physical addresses (e.g., IP addresses 
of respective devices), a protocol version (e.g., IPv4 or IPv6), 
a length of the packet, error correction data, and any other 
useful information.In step 904, the incoming packet may be 
classified for processing by one of a plurality of VRF 
subsystems. As discussed with reference to FIG. 3, the 
incoming packet 112 may be classified by the VRF 
classification logic 102 for processing by one of the VRF 
subsystems from the VRF subsystems 304 a-304 n. Each VRF 
subsystem may include a plurality of packet processors as 
discussed with reference to FIG. 4. In some embodiments, the 
VRF classification logic 102 may determine a VRF ID 
associated with the packet 112 and send the packet 112 to the 
VRF subsystem associated with that VRF ID. In one instance, 
based on the classification, the packet 112 may be sent to the 
first VRF subsystem 304 a for processing by multiple packet 
processors of the first VRF subsystem 304 a. For example…

Figure 4: Case Study 1: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.

Generated Brief and Detailed Descriptions Ground Truth Brief and Detailed Descriptions

FIG. 16 illustrates a flow chart of a method for providing a 
completion suggestion within a property page.

FIG. 16 illustrates method operations for completing user profile 
data, in accordance with an embodiment of the invention.

FIG. 16 shows a flowchart of an example of a computer 
implemented method 1600 for providing a user interface related to 
user profile data, performed in accordance with some 
implementations. Method 1600 may be described with reference 
to FIGS. 19-23. At block 1610, a server performing method 1600 
detects user interactions in a property page, the user interactions 
include interactions associated with the user and interactions 
associated with the social contacts of the user. For example, the 
user may have interacted with a post by one of his social contacts, 
or a record, or a feed. The interactions can be detected in the 
page provided to the user. At block 1620, the server performing 
method 1600 analyzes content of the user interactions to 
determine context. For example, the context can be determined by 
analyzing the words in a post, or the subject matter of a record. 
The context can be in the form of keywords, or concepts as 
described above. At block 1630, the server performing method 
1600 examines user profile data to determine a field of information 
related to the context that needs to be filled or updated. There are 
many fields that can be related to the context. As described above, 
a field can be a value in a user profile. In some implementations, 
the field can be a user interaction. In some implementations, the 
field can be a user profile attribute. Other types of fields may exist. 
At block 1640, the server performing method 1600 generates a 
user interface with a suggestion/query related to the field, the 
suggestion/query including information from context of the user 
interactions obtained from the analysis. For example, if the user is 
looking at a post by one of his social contacts, and the context of 
the post indicates that it is related to a product, then the 
suggestion/query can…

With the above general understanding of the function of the profile 
completion module, a method for completing user profile will now 
be described with reference to FIG. 16. The method begins in 
operation 1610, when user interactions at a property page are 
detected. The user interactions may include social interactions, 
such as comments, posts, pictures, etc., generated by a user or by 
the social contacts of the user or entities or groups of entities that 
are socially connected to the user or general actions/interactions 
associated with the user or actions/interactions associated with 
social contacts of the user. The user interactions are analyzed to 
determine the context of the interaction and/or data content 
associated with the user or social contacts of the user, as 
illustrated in operation 1620. User profile information is examined 
to determine a field related to the context that needs to be filled or 
updated, as illustrated in operation 1630. Based on the 
examination of the user profile information and the analysis of the 
user interactions, a user interface with a query/suggestion related 
to the field is generated, as illustrated in operation 1640. The 
query/suggestion includes information from context of the user 
interactions obtained from the analysis. The user interface may 
also include a confirmation statement to confirm the suggestion or 
a suggested user action to be taken at the user interface, an input 
area for responding to the query and/or the suggestion, if needed. 
The query/suggestion may be identified from a pre-defined list of 
queries/suggestions and is related to a specific field of the user 
profile that is to be filled. Response to the query/suggestion at the 
user interface is monitored and used to update the field in the user 
profile based on user action at the user interface, as illustrated 
in…

Figure 5: Case Study 2: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.



Generated Brief and Detailed Descriptions Ground Truth Brief and Detailed Descriptions

FIG. 2 shows a system for using a network service for sharing 
spreadsheet objects;

FIG. 2 shows a system for codeless sharing of spreadsheet objects 
with a network service;

FIG. 2 illustrates an embodiment of a system for sharing 
spreadsheet content. The system 200 may include a computing 
device 1 210, a computing device 2 220, and a spreadsheet server 
240. The computing device 1 210 may include a spreadsheet 
application 212, a sharing manager 26, and a user interface 216. 
The computing device 2 220 may include a web browser 222 and 
an application 224. The sharing manager 26 may be a software 
application that may manage sharing of spreadsheet content 
between the computing device 1 210 and the computing device 2 
220. The sharing manager 26 may manage sharing of spreadsheet 
content using a web browser 222 and an application 224. The web 
browser 222 may be a web browser such as Internet Explorer, 
Mozilla Firefox, Safari, or other similar web browser. The 
application 224 may be a software application that may display 
and/or interact with spreadsheet content. The user interface 216 
may be a user interface such as a graphical user interface.The 
computing device 2 220 may include a spreadsheet application 
224, a web browser 222, and a user interface 216. The 
spreadsheet application 224 may be a software application that 
may display and/or interact with spreadsheet content. The web 
browser 222 may be a web browser such as Internet Explorer, 
Mozilla Firefox, Safari, or other similar web browser. The user 
interface 216 may be a user interface such as a graphical user 
interface.The spreadsheet server 240 may include a web 
application 242, a spreadsheet web renderer 244. A network 
service 250 may include a network service application 252. The 
web application 242 may be a software application that may 
provide spreadsheet content to the computing device 1 210 and 
the computing device 2 220. The spreadsheet…

FIG. 2 shows a system for codeless sharing of spreadsheet objects 
with a network service. As illustrated, system 200 includes 
computing device 1 (210), computing device 2 (220), network 
share 230, spreadsheet server 240 and network service 250.The 
computing devices may be any type of computing device that is 
configured to perform the operations relating to the sharing of one 
or more spreadsheet objects with a network service. For example, 
some of the computing devices may be: mobile computing devices 
(e.g. cellular phones, tablets, smart phones, laptops, and the like); 
desktop computing devices and servers. Some computing devices 
may be arranged to provide an online cloud based service (e.g. 
interacting with spreadsheets online), some may be arranged as 
data shares, some may be arranged in local networks, some may 
be arranged in networks accessible through the Internet, and the 
like.The computing devices are coupled through network 18. 
Network 18 may be many different types of networks. For example, 
network 18 may be an IP network, a carrier network for cellular 
communications, and the like. Generally, network 18 is used to 
transmit data between computing devices, such as computing 
device 1, computing device 2, network share 230, spreadsheet 
server 240 and network service 250.Computing device 1 includes 
spreadsheet application 212, spreadsheet 214 and user interface 
216. As illustrated, computing device 1 is used by a user to select 
one or more objects to share with a network service, such as 
network service 250. The network service may be a social 
networking site, a blog, a web page hosted by a service, or some 
other network location.Spreadsheet 214 comprises different 
cells/spreadsheet objects that may be selected for sharing with a 
network service. The…

Figure 6: Case Study 3: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.

Generated Brief and Detailed Descriptions Ground Truth Brief and Detailed Descriptions

FIG. 34 illustrates a flow chart of a method for checking open orders 
in a stock;

FIG. 34 is a flow diagram illustrating software which enables a user 
to view the status of his open orders in a stock.

FIG. 34 is a block diagram that illustrates the function of the open 
orders window in the main trade screen, in accordance with an 
embodiment of the present invention. Step 3410. The user seeks to 
review the list of open orders in all stocks that are active in the 
account. The user selects the open orders function from function bar 
2725. Step 3415. The application displays an entire list of the open 
orders window in the master trade screen. Step 3420. The user can 
then scroll through the open order list and can focus on a particular 
open order. The user can also select the open orders function from 
function bar 2725 to display the open orders window in the master 
trade screen. Step 3425. The user selects a particular stock from the 
stock summary display and then selects the open orders function 
from function bar 2725. Step 3430. The application displays only the 
selected open order in the open orders window. Step 3435. The user 
selects a desired open order from the list displayed in the open 
orders window. The application highlights the order for possible 
actions by the user, including: cancel, change, or replace. Step 
3440. The user selects the desired open order from the list displayed 
in the open orders window. Step 3445. The user selects an operation 
from the open orders window. The application automatically cancels, 
changes, or deletes the selected open order. Step 3450. The 
application populates a trade ticket with information from the open 
order window. Step 3455. The user executes the desired function 
according to trade ticket functions. Step 3460. To hide the open 
orders window, the user selects the open orders function from 
function bar 2725. Step 3465. The application removes the open 
orders window and removes the indication of open orders from the 
open orders function.

The application software used in the practice of the invention is 
described in greater detail in conjunction with FIGS. 17-40 below. 
FIG. 34 is a flow diagram illustrating software which enables a user 
to view the status of his open orders in a stock. Initially, at step 3410, 
the user seeks to review his open orders in all stocks active in his 
account. At step 3415, the user selects the open orders function 
from the function buttons display (see FIGS. 5 & 15). At step 3420, 
the application displays the entire list of open orders in the open 
orders (see display in FIGS. 5 & 7) display of the master trade 
screen. At step 3425, the user views the display showing the open 
orders. The user selects a stock, at step 3430, from the stock 
summary display (see FIGS. 5 & 12) and selects the Open orders 
function. The application then, at step 3435, displays only open 
orders for the selected stock in the open orders display. The user 
selects, at step 3440, the desired open order from the list. The 
application highlights the order for actions by the user, such actions 
including cancel, change, or replace. At step 3445, the user selects 
an operation (e.g., cancel, change, or delete) from the open orders 
display. The application automatically populates the trade ticket, at 
step 3450 (see FIGS. 5 & 11), with information from the open orders 
display on the selected stock. At step 3455, the user executes the 
desired function as requested in the trade ticket. To hide open 
orders, the user selects, at step 3460, the Open orders function from 
the function button display (function bar). The application then 
removes the open orders display and removes the indication from 
the open orders function, at step 3465.

Figure 7: Case Study 4: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.
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FIG. 10 is a block diagram of a definition-based KPI management 
system that facilitates the linking of KPIs to an application.

FIG. 10 is a block diagram of a KPI system in accordance with an 
aspect of the subject invention.

FIG. 10 illustrates a system 1000 that employs KPI definition(s) in 
connection with automatically scaling a target component. The 
system 1000 includes the server 120, the application component 
110, and the interface component 130, which are substantially 
similar to the server 120, the application component 110, and the 
interface component 120, respectively, described in connection 
with FIG. 1. The system 1000 further includes a KPI definition 
component 134 that can provide KPI definition(s) to the server 
120. It is to be appreciated that the KPI definition component 134 
can be implemented as a component within the server 120, as a 
separate server, etc. For instance, the KPI definition component 
134 can be associated with an enterprise and can provide KPI 
definition(s) that are specific to the enterprise. In another 
example, the KPI definition component 134 can provide KPI 
definition(s) that are more generic and can be utilized by multiple 
enterprises. The KPI definition(s) provided by the KPI definition 
component 134 can be related to various aspects that are to be 
monitored by the server 120. For example, the KPI definition(s) 
can be related to an amount of traffic associated with the 
application component 110, an amount of resources utilized by 
the application component 110, a latency associated with the 
application component 110, etc. According to an example, the KPI 
definition(s) can be related to a performance of the application 
component 110 in connection with a particular service. For 
example, the KPI definition(s) can be related to a performance of 
the application component 110 in connection with a chat service, 
a voice service, a video service, etc. According to another 
example, the KPI definition(s) can be related to a performance of 
the application component 110 in connection…

FIG. 10 depicts a KPI system 1000 in accordance with an aspect 
of the subject invention. KPI system 100 includes an application 
component 110, an interface component 114, and a server 120 
including data source 130, data 132 and KPI component(s) 134. 
Application component 110 can be a computer program or 
computer program product including a plurality or executable 
instructions for performing one or more functions. One of those 
functions can include presentation, interaction, or processing of 
key performance indicators. Server 140 is a computer or 
computing device that provides data to other computers or 
applications over a network. Server 140 can manage the 
resources such as one or more data stores or databases 130. 
According to one aspect of the invention, the server 140 can be 
an analysis server and the database 130 can be a 
multidimensional database. However, it should be appreciated 
that the invention is not so limited. Various aspects of the present 
invention can be performed on a server designated for a different 
purpose and possibly storing data in a relational format. Database 
130 stores data 130. Similarly, database 130 can store a specific 
type of data namely metadata. Metadata is simply data about or 
concerning other data. Such metadata can be a schema 
describing how other data is organized, for example, cubes, 
dimensions, hierarchies, measures, and so forth for a 
multidimensional database. According to another aspect of the 
invention, additional metadata can be stored corresponding to a 
KPI component(s) 134. KPIs are collections of attributes or 
elements. Accordingly, a KPI component can provide for and 
define a KPI as previously described. Interface component 120 
can facilitate retrieval and transmission of data concerning…

Figure 8: Case Study 5: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.
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FIG. 2 is a block diagram illustrating a dedicated VMM pool of 
virtual machines with dedicated VMM hardware resources, 
according to various embodiments.

FIG. 2 is a schematic illustration of an example implementation of 
a cloning manager of the example system of FIG. 1B.

FIG. 2 is a block diagram of an example system 200 for 
maintaining a virtualized environment. The system 200 includes 
hardware resources 202, a load balancer 206, a pool 204 of 
virtual machine instances, a cloning manager 152, and a virtual 
machine migration service (VMMS) 102. The hardware resources 
202 can include one or more servers. The one or more servers 
can include one or more CPUs, memory, storage, and/or 
networking resources. The hardware resources 202 can be 
virtualized, meaning the hardware resources 202 can be 
presented to virtual machines as multiple virtual machines having 
multiple virtualized CPUs, memory, storage, and/or networking 
resources. The hardware resources 202 can be virtualized by a 
hypervisor or virtual machine monitor (VMM) that manages the 
hardware resources 202. The hardware resources 202 can be 
virtualized by a single VMM and present to multiple virtual 
machines.The load balancer 206 can be a computer system or a 
server that manages a computer cluster or a cloud computer 
cluster. The load balancer 206 can be responsible for distributing 
resources, for example, workloads, input or output among a 
network of servers, for example, in a computer cluster. The load 
balancer 206 can be responsible for balancing the resources, for 
example, the number of client requests by a client application 
running on different servers, to optimize resource use, maximize 
throughput, minimize response time, and avoid overload. The 
load balancer 206 can be responsible for increasing or 
decreasing resources responsive to demand. The load balancer 
206 can use a least connections algorithm to route client 
requests to servers. The pool 204 of virtual machine…

FIG. 2 is a schematic illustration of an example system 300 to 
provision virtual machine resources. In addition to the VMM 102 
and the cloning manager 152 described above in connection with 
FIG. 1B, the illustrated example of FIG. 2 includes hardware 
resources 202, a VM pool 204, and a load balancer 206 
communicatively coupled to a network 208. The example 
hardware resources 202 of FIG. 2 may include any number of 
CPUs, storage resources (e.g., hard disk drive(s), optical disk 
drive(s), flash disk drive(s), etc.) and/or any amount of memory, 
such as the example RAM 112 and/or nonvolatile memory. The 
illustrated example of FIG. 2 also includes a first customer 210 
and a second customer 212, each of which may include any 
number of users 214. Although the illustrated example of FIG. 2 
includes two customers, any number of customers may be 
serviced by example methods, apparatus, systems and/or 
articles of manufacture disclosed herein.In operation, the 
example cloning manager 152 of FIG. 2 invokes the example 
VMM 102 to instantiate a parent VM, such as the example VM1 
104 of FIG. 1B, which results in an established (running) VM. As 
described above, the parent VM performs a number of disk 
accesses to acquire and store pages to physical memory 112. 
The parent VM may allocate other hardware resources 202, such 
as one or more CPUs and/or other processors dedicated to the 
parent VM. The example parent VM may be generally associated 
with a type of task and/or operation including, but not limited to 
OLAP, banking, ecommerce, and/or web services. In the event 
one or more task(s) are deemed dissimilar, additional parent VMs 
may be instantiated, as desired. When the parent VM…

Figure 9: Case Study 6: An example of generated and ground truth brief and detailed descriptions using our proposed
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FIG. 8A is a block diagram of an embodiment of a system for 
progressively loading content;

FIG. 8A is a diagrammatic view of another embodiment of downloading 
according to a delivery behavior;

Referring to FIG. 8A, a diagrammatic view of a system for remote 
diagnostic analysis and management of networked devices is shown. 
As shown, the system 800 may include a client 205 and one or more 
content sources 290A-290N. The client 205 may include a number of 
modules, such as a direction 810, a source 815, a schedule 820, a 
reports 825 and a phase 830. The content source 290A-290N may 
include a number of modules, such as a load-balanced host, a 
content-balanced host, a load-balanced bitstream, a neighborcasting 
module, a geographic proxy, and a geographic proxy. The progressive 
diagnostic engine 810 may be configured to perform progressive 
diagnostics on the content sources 290A-290N. The progressive 
diagnostic engine 810 may be configured to perform progressive 
diagnostics on the content sources 290A-290N. The source 815 may 
be configured to identify one or more content sources 290A-290N to 
be monitored by the system 800. The direction 810 may be configured 
to identify a direction in which to send the monitored content source 
290A-290N. The schedule 820 may be configured to identify a 
schedule for sending the monitored content source 290A-290N. The 
phase 830 may be configured to identify a phase of the schedule 820 
for sending the monitored content source 290A-290N. The reports 825 
may be configured to generate one or more reports associated with the 
monitored content source 290A-290N. The directions 810 may be 
configured to identify one or more directions in which to send the 
monitored content source 290A-290N.

Referring now to FIG. 8A, the environment 800 provides a 
diagrammatical view of delivery strategies 810 used between a client 
205 and one or more content source 290A-290N. In overview of 
environment 800, a client 205 comprises the IDS 120 in 
communication over a network with one or more content sources 
290A-290N. The client 205 may use a delivery behavior 230 to 
download one or more files from a content source 290A-290N. The 
delivery behavior 230 may identify or specify one or more of the 
following: 1) direction 810, 2) source 815, 3) schedule 820, 4) report 
825, and 5) phase 830. The content sources 290A-290N may 
comprise a variety of types of content sources providing a range of 
performance or download characteristics. The content source 
290A-290N may comprise any of the following: 1) a load-balance host 
or server, 2) a content-balance host or server, 3) a peer-to-peer client, 
host, server or peer, such as a BitTorrent tracker or seed host, 4) an 
inhouse proxy, 5) a geographic proxy, or 6) may otherwise use 
neighborcasting to be directed to a content source.In further detail, the 
direction 810 of the delivery behavior 230 may identify or specify any 
of the following types of directions: 1) progressive 810A, 2) reverse 
810B, 3) gather 810C, and combination 810D. Any one of these 
directions 810A-810D may be a default download direction used by the 
client 205, IDS 120 or download manager 220, and may be a default 
download direction for a user, application or content source 
290A-290N. For a progressive download direction 810A, the download 
manager 220 of the IDS 120 downloads the content, such as file, from 
the beginning to end of the content in order, i.e. from front-to-back or 
start-to-end order.

Figure 10: Case Study 7: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.
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FIG. 1 is a schematic overview of a system for providing an 
rack configuration to a device according to one embodiment.

FIG. 1 schematically shows a block diagram of a rack 
management system for constructing, configuring, monitoring 
and managing the managed devices on a rack according to one 
embodiment of the present disclosure;

FIG. 1 is a diagram of an example rack management system 
100. The rack management system 100 includes a device 
discovery module 140, a rack management module 160, a rack 
management communication interface 150, and a user 
interface module 130. The rack management system 100 
communicates with managed devices 170. The managed 
devices 170 may include any number of managed devices 
170-1, 170-2, 170-3, . . . , 170-N. The managed devices 170 
may include, for example, servers, storage devices, switches, 
routers, or any other type of data center component. The rack 
management system 100 may communicate with the managed 
devices 170 using any type of communication protocol 
including, for example, a proprietary protocol, an Ethernet 
protocol, a fiber channel protocol, a serial attached SCSI 
protocol, a SONET protocol, or a Fibre Channel over Ethernet 
protocol.The device discovery module 140 is configured to 
discover managed devices 170. For example, the device 
discovery module 140 may communicate with the managed 
devices 170 using a rack management protocol. The rack 
management protocol may be a proprietary protocol or a 
standard protocol. The rack management protocol may be 
based on, for example, the Distributed Management Task 
Force (DMTF) Open System Manufacturer's Alliance (OSMA) 
standard. The device discovery module 140 may send a rack 
management protocol communication to each of the managed 
devices 170. The rack management protocol communication 
may request the managed devices 170 to provide data such 
as, for example, identification data identifying the managed…

The present disclosure will now be described more fully 
hereinafter with reference to the accompanying drawings, FIGS. 
1-7, in which embodiments of the disclosure are shown. This 
disclosure may, however, be embodied in many different forms 
and should not be construed as limited to the embodiments set 
forth herein; rather, these embodiments are provided so that 
this disclosure will be thorough and complete, and will fully 
convey the scope of the disclosure to those skilled in the art. 
Like numbers refer to like elements throughout.In computer 
server centers or data centers, a large amount of computers, 
servers, routers, disk arrays, and switches are mounted on one 
or more racks and powered by power distribution units (PDUs). 
Monitoring and managing the operations of these managed 
devices on the rack are critically important. The managed 
devices on the rack can be any type of device, including, but not 
limited to, routers, access servers, switches, bridges, hubs, IP 
telephones, IP video cameras, computer hosts, and printers. A 
power distribution unit (PDU) is a device fitted with multiple 
outputs designed to distribute electric power, especially to racks 
of computers and networking equipment located within the 
computer server centers or data centers. Most computer 
servers, storage and network devices provide remote access. 
Common methods are accessible through SNMP and include a 
RS-232 serial connection (for local management) using a 
command-line interface (CLI) or a LAN network-controller (for 
remote management) using a web page. This allows an 
administrator to monitor and manage the managed devices on 
the rack from a remote terminal and…

Figure 11: Case Study 8: An example of generated and ground truth brief and detailed descriptions using our proposed
PATENTLMM.



Ground Truth: FIG. 12A shows a 
system that employs hopped 
hardware addresses, hopped IP 
addresses, and hopped discriminator 
fields.

Generated Description: FIG. 2C is a 
flow diagram illustrating the steps of 
building an application profile and 
uploading it to the EPPS of the present 
invention;

Ground Truth: FIG. 20 is a flowchart 
illustrating exemplary operation of an 
enterprise computer network in which 
an EPP server dynamically generates 
an application-specific, system-level 
privilege profile in accordance with the 
principles of the invention.

Generated Description: FIG. 12A 
shows an example of a user-interface 
allowing a user to select a plurality of 
assets.

Ground Truth: FIG. 15 shows an 
expanded view of the 3D Imaging 
System block of FIG. 12.

Generated Description: FIG. 2 is a 
schematic of an exemplary 
operating system using a small 
multispectral filter;

Ground Truth: FIG. 2 is an 
illustration depicting a first 
embodiment of a mobile robotic 
device, according in accordance with 
aspects described herein.

Generated Description: FIG. 15 is 
a flow chart showing the 2D to 3D 
conversion process for the 
embodiment of FIG. 14.

a.

b.

c.

d.

Figure 12: Failure Cases for the brief descriptions generated by PATENTLMM.

Generated Detailed Description Ground Truth Detailed Description

FIG. 11 is a block diagram of a personal search system 1100 in 
accordance with an embodiment of the present invention. The 
personal search system 1100 includes a personal search system 
elk diagram 1102. The personal search system elk diagram 1102 
includes a browser capable device 1104, a network component 
1106, a user interface component 1108, a search engine 
component 1118, a link crawler component 1112, a database 
component 1114, a fulltext index component 1116, a search 
engine component 1118, an ad server component 1110, and a 
server based components 1100. The network component 1106 is 
connected to the browser capable device 1104, the link crawler 
component 1112, the database component 1114, the fulltext index 
component 1116, the search engine component 1118, and the ad 
server component 1110. The search engine component 1118 is 
connected to the database component 1114 and the ad server 
component 1110. The ad server component 1110 is connected to 
the server based components 1100. The browser capable device 
1104 is connected to the network component 1106. The server 
based components 1110 are connected to the database 
component 1114, the fulltext index component 1116, and the 
search engine component 1118.The browser capable device 
1104 is a device capable of being accessed by a browser. The 
browser is a software program that allows a user to display and 
interact with text, images, videos, music, games, applications, 
and other information that may be located on the browser 
capable device 1104 or on a remote location. The browser 
capable device 1104 may be a personal computer, a laptop 
computer, a mobile phone, a personal digital assistant (PDA), a 
tablet computer, a smart television…

FIG. 11 is a block diagram, which shows one embodiment of a 
personal search system. As shown a personal search system 
may include a browser capable device 1102, a network 
component 1106 and server based components 1108.The 
browser capable device 1102 provides the user interface 
component 1104 for the personal search system. The browser 
capable device 1102 may include but is not limited to personal 
computers, PDAs, cell phones and other mobile devices. The 
personal search system communicates with the user via the user 
interface 1104 on the browser capable device 1102.The network 
component 1106 connects the browser capable device 1102 to 
the server based components 1108 and permits them to 
communicate. The network component 1106 may include but is 
not limited to the Internet, an intranet or a wireless network.The 
server components 1108 of the personal search system may 
include a database component 1110, a link crawler component 
1112, a search engine component 1114, a full text index 
component 1116 and an ad server component 1118. The 
database component 1110 stores information which, may include 
the search engine characteristics of the search user and the 
advertising characteristics of the advertising user of the personal 
search system. These characteristics are received from the user 
interface component 1104 on the browser capable device 1102 
via the network component 1106. The link crawler component 
1112 crawls the digital content data resources, which are part of 
the search user's personal search engine characteristics 
according to crawl specifications in the search engine 
characteristics entered by the search user via the user interface 
component 1104 and stored in the database …

Figure 13: Failure Case for the detailed description generated by PATENTLMM. The text in red highlights the incorrect associ-
ation of nodes and node labels in the generated description.
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FIG. 14 is a block diagram of a network environment in which the 
online system operates, in accordance with some embodiments. 
The network environment comprises one or more seller systems 
130, one or more buyer groups 140, one or more buyer systems 
145, one or more non-seller systems 150, and a central manager 
110. The central manager 110 is communicatively coupled to the 
seller systems 130, the buyer groups 140, the buyer systems 
145, and the non-seller systems 150. Each seller system 130 is 
associated with one or more sellers. Each buyer group 140 is 
associated with one or more buyers. Each buyer system 145 is 
associated with one or more buyers. Each non-seller system 150 
is associated with one or more non-sellers. The central manager 
110 collects transaction information from the seller systems 130, 
the buyer groups 140, the buyer systems 145, and the non-seller 
systems 150. The transaction information comprises information 
about transactions involving one or more sellers and one or more 
buyers. The central manager 110 may be implemented as a 
server system, a computer system, or any other system that is 
capable of performing the functions described herein.The seller 
systems 130, the buyer groups 140, the buyer systems 145, and 
the non-seller systems 150 may be implemented as a server 
system, a computer system, or any other system that is capable 
of performing the functions described herein. In some 
embodiments, a seller system 130, a buyer system 145, or a 
non-seller system 150 is a mobile device (e.g., a smartphone, a 
tablet, or a notebook computer) or a stationary device (e.g., a 
desktop computer or a laptop computer). 

FIG. 14 shows a diagram of an overall on-line sales environment 
1400 supporting various buyer group management 
implementations, in accordance with various aspects of the 
present invention. The on-line sales environment 1400 may 
comprise a communication network 1402 that communicatively 
couples various different entities as contemplated above. As 
mentioned above, such communication network 1402 may 
comprise any of a variety of characteristics. For example, the 
communication network 1402 may comprise any one or more of 
the Internet, a wide area network, a metropolitan area network, a 
local area network, a telecommunication network, a general data 
communication network, a television network, and may utilize any 
one or more of a variety of communication media, including wired 
media, wireless media, tethered optical media, non-tethered 
optical media, etc.The on-line sales environment 1400 may also 
comprise a central manager 1404 (e.g., similar to or the same as 
central manager 1310) that is independently located and 
operated as its own web or application site, which may comprise 
a server or server environment supporting all of the functionality 
discussed above. The central manager 1404 comprises a buyer 
group database 1406 that stores buyer group information, as well 
as a user interface (such as, for example, one or more web 
pages or application screens, or portions thereof, as discussed 
above) that includes buyer group postings 1408, which are 
communicated to users via the communication network 1402. 
The buyer group postings 1408 can be viewed and selected by 
one or more of a plurality of users via a corresponding one or 
more of a plurality of user devices 1410 (e.g., computers, tablets, 
smartphones, etc. ), enabling users to join the buyer group. The 
buyer group postings 1408 may also (or alternatively) be an 
advertisement and/or link that when selected, vectors users to 
another web or application site (e.g., a seller site, a multi-seller 
site…

Figure 14: Failure Case for the detailed description generated by PATENTLMM. The text in red highlights the hallucinated
node labels.
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