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Abstract

Non-native speakers with limited vocabulary often struggle
to name specific objects despite being able to visualize them,
e.g., people outside Australia searching for ‘numbats.’ Fur-
ther, users may want to search for such elusive objects with
difficult-to-sketch interactions, e.g., “numbat digging in the
ground.” In such common but complex situations, users desire
a search interface that accepts composite multimodal queries
comprising hand-drawn sketches of “difficult-to-name but
easy-to-draw” objects and text describing “difficult-to-sketch
but easy-to-verbalize” object’s attributes or interaction with
the scene. This novel problem statement distinctly differs
from the previously well-researched TBIR (text-based im-
age retrieval) and SBIR (sketch-based image retrieval) prob-
lems. To study this under-explored task, we curate a dataset,
CSTBIR (Composite Sketch+Text Based Image Retrieval),
consisting of ∼2M queries and 108K natural scene im-
ages. Further, as a solution to this problem, we propose a
pretrained multimodal transformer-based baseline, STNET
(Sketch+Text Network), that uses a hand-drawn sketch to lo-
calize relevant objects in the natural scene image, and en-
codes the text and image to perform image retrieval. In ad-
dition to contrastive learning, we propose multiple training
objectives that improve the performance of our model. Exten-
sive experiments show that our proposed method outperforms
several state-of-the-art retrieval methods for text-only, sketch-
only, and composite query modalities. We make the dataset
and code available at: https://vl2g.github.io/projects/cstbir.

Introduction
Traditional text-based image retrieval (TBIR) systems (Li
et al. 2020a; Kim, Son, and Kim 2021; Zhang et al. 2020;
Lee et al. 2018; Li et al. 2020b) are intuitive for users with
strong linguistic abilities. However, non-native speakers or
users unfamiliar with particular objects struggle in using
such systems to find objects with “elusive” names, e.g., users
outside Australia searching for numbats, as shown in Fig-
ure 1. Elaborate text descriptions in lieu of the precise object
name could provide limited help, even with all the details.
For example, “Small mammal with striped back and long
snout digging in the ground” as a replacement for “numbats”
leads to images of chipmunk, badger, weasel, mongoose, or
skunk.
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Figure 1: CSTBIR: Composite Sketch+Text Based Image
Retrieval: A user wants to search “Numbat digging in the
ground” but does not know the word “numbat”, and the in-
teraction “digging in the ground” is not easy to sketch.

Sketch-based image retrieval (SBIR) systems (Yu et al.
2016; Dey et al. 2019; Song et al. 2017b; Collomosse, Bui,
and Jin 2019; Sain et al. 2022) seem to provide an illu-
sory relief in such situations. Although a user can sketch
“difficult-to-name but easy-to-draw” objects, (1) users may
not have enough time, skills, or tools to draw all the details,
leading to ambiguity in sketches; (2) users may be look-
ing for “difficult-to-sketch but easy-to-verbalize” object’s at-
tributes or interaction with the scene. For example, for the
query, “numbat digging in the ground”, it is difficult to draw
a sketch to represent “digging in the ground”, and even if
drawn, the sketch could lead to false positives about “num-
bat eating an insect” or “numbat searching for termites”.

Such common but complex search situations require novel
multimodal search interfaces, allowing seamless text and
sketch mix-ups in queries. Such a flexible and natural inter-
face should help the user to draw sketches for “difficult-to-
name” objects effortlessly and then complement their cre-
ations with text descriptions to define layout, color, pose,
and other object characteristics, along with complex interac-
tions with other objects in scenes. We refer to such a novel
proposed system as CSTBIR or Composite Sketch+Text



Based Image Retrieval system.
Although a vast literature exists on TBIR and SBIR, to

the best of our knowledge, the CSTBIR problem setting has
yet to be studied rigorously. There have been some recent
works (Song et al. 2017a; Sangkloy et al. 2022; Chowdhury
et al. 2023a) that attempt to solve a simpler version, where:
(a) target image collection is focused objects rather than
complex natural scenes, (b) sketch is at scene-level rather
than object-level, or (c) text description is comprehensive
rather than partial (or complementary). This paper proposes
a system for the complex CSTBIR setting.

Given input with a rough sketch and a complementary text
description (e.g., the sketch of “numbat” and text=“digging
in the ground”), an evident approach is to guess the object
name from the sketch, complete the text query as “Numbat
digging in the ground” and then use TBIR methods. How-
ever, such a two-stage method may fail when the sketch rep-
resents an object with an ambiguous name (e.g., mouse, bat,
crane) and suffers from signal loss when attempting to de-
scribe knowledge in the sketch using an object name. Addi-
tionally, such two-stage approaches are restricted to closed-
world settings where the object names are previously known
and may not generalize well to rare or novel objects. Hence,
we propose a principled method – STNET that jointly pro-
cesses text and sketch inputs. More specifically, we pro-
pose the following task-specific pretraining objectives for
the multimodal transformer: (i) object classification, i.e.,
predict object name; (ii) sketch-guided object detection, i.e.,
localize the relevant objects in the image, and (iii) sketch
reconstruction, i.e., recreate the query sketch from the mul-
timodal representation of sketch, and the image.

Overall, we make the following main contributions in this
paper: (i) We study an important and under-explored task,
namely CSTBIR. (ii) Toward this novel setting, we con-
tribute a large dataset of ∼2M queries and ∼108K natural
scene images. (iii) For CSTBIR, we pre-train a multimodal
Transformer STNET, designed to handle sketch and text as
inputs, using multiple loss functions: contrastive loss, ob-
ject classification loss, sketch-guided object detection loss,
and sketch reconstruction loss. (iv) Our proposed model
outperforms several competitive text-only, sketch-only, and
sketch+text baselines.

Related Work
Image retrieval systems can answer queries expressed us-
ing hand-drawn sketches (SBIR), text (TBIR), a combina-
tion of sketch and text (CSTBIR), color layout, concept
layout (Zhou, Li, and Tian 2017), visual features (Tian,
Newsam, and Boakye 2023; Dodds et al. 2020), or location-
sensitive tags (Gomez et al. 2020). We review existing work
on TBIR, SBIR, and multimodal query-based IR.

Sketch-Based Image Retrieval (SBIR): It allows the
flexibility to easily specify the qualitative characteristics
using sketches (Yu et al. 2016; Dey et al. 2019; Song
et al. 2017b). Following the initial work on sketch recog-
nition (Sun et al. 2012), earlier SBIR studies mainly focused
on convolutional neural networks (CNN) (Yu et al. 2016;
Liu et al. 2017) which was soon followed by various Trans-

Query Dataset Sketch Text Target Image

Sketch TU-Berlin Object None Focused Object
Sketch QMUL-Shoe-V2 Object None Focused Object
Text COCO None Complete Complete Scene
Text Flickr-30K None Complete Complete Scene
Sketch+Text FS COCO Scene Complete Complete Scene
Sketch+Text CSTBIR (Ours) Object Complementary Complete Scene

Table 1: Comparison of datasets with CSTBIR. The CST-
BIR is the only dataset that demands searching over a
database of natural scene images using queries of object
sketch and partial complementary natural language sen-
tences.

former (Vaswani et al. 2017)-based architectures (Ribeiro
et al. 2020; Chowdhury et al. 2022). Deep Siamese mod-
els with triplet loss have also been explored (Yu et al. 2016;
Collomosse, Bui, and Jin 2019). Several specialized SBIR
settings have also emerged such as Zero Shot-SBIR (Pandey
et al. 2020; Dey et al. 2019; Dutta and Akata 2019), fine-
grained SBIR (Liu et al. 2020; Bhunia et al. 2022; Pang et al.
2019, 2017; Ling et al. 2022; Bhunia et al. 2020; Song et al.
2017b), and category-level SBIR (Sain et al. 2021; Bhunia
et al. 2021; Sain et al. 2022).

Text-Based Image Retrieval (TBIR): Popular methods
for TBIR include alignment of input text and the correspond-
ing input image using pretrained multimodal Transformer
methods like VisualBERT (Li et al. 2020a) and ViLT (Kim,
Son, and Kim 2021). Further, cross-attention-based mod-
els (Zhang et al. 2020; Lee et al. 2018) and models that use
object tags detected in images (Li et al. 2020b) have also
been proposed. Recently, contrastive learning methods (Jia
et al. 2021), along with zero-shot learning (Radford et al.
2021), have been shown to achieve state-of-the-art results.

Multimodal Query Based Image Retrieval: Several sys-
tems have been built to consume multimodal input for image
retrieval. Earlier works used reference images and text as an
attribute on a category-level retrieval (Kovashka, Parikh, and
Grauman 2012; Han et al. 2017). Input text data was more
elaborated to provide improved results (Guo et al. 2018; Vo
et al. 2019). While such earlier systems used CNNs, more
recent systems (Song et al. 2023; Baldrati et al. 2022) lever-
age Transformers. Further, some studies (Changpinyo et al.
2021; Pont-Tuset et al. 2020) explored the setting where the
user simultaneously uses both speech and mouse traces as
the query. Lastly, (Nakatsuka, Hamasaki, and Goto 2023)
search images relevant to input music.

It is not always possible to have an input reference im-
age for image retrieval; instead, a sketch (along with text
description) is used, which gives more flexibility. Image re-
trieval using hand-drawn sketches and textual descriptive
data has been under-explored.

Detailed sketch and text input have been used to (a)
retrieve e-commerce product images using CNNs and
LSTMs (Song et al. 2017a), and (b) retrieve scene images
using CLIP (Sangkloy et al. 2022; Chowdhury et al. 2023a).
However, in several practical scenarios, (a) the sketch is



Person dressed in a suit standing beside a                     .

Query: 

Target ground truth image:

People admiring a                      displayed on a table.

Query: 

Target ground truth image:

Pair of         climbing cliffs on a sunny day.

Query: 

Target ground truth image:

Figure 2: Examples from our dataset – CSTBIR. It contains queries composed of a
sketch of an object, a natural language text describing its attributes and interactions,
and the target natural scene image containing the object. Queried objects from left
to right: markhor, bodhran, and penny-farthing (Best viewed in color).

Property Value

Average sentence length (in words/tokens) 5.4 / 7.7
Number of Unique Images 108K
Number of Unique Sketches 562K
Number of Unique Object Categories 258
Number of Training Instances 1.89M
Number of Validation Instances 97K
Number of Test Instances 5000
Avg % Area Covered by Query 36.7

Table 2: CSTBIR Dataset Statistics

object-level, very rough, and not elaborate, and (b) the text
is partial (complementary to sketch) and not self-contained.
Unfortunately, no previous work exists for such a (com-
plex) practical setting. Our contributed dataset, CSTBIR,
and the proposed method addresses this setting in this pa-
per. Compared to (Sangkloy et al. 2022) where sketch cov-
ers 100% area of the image to be retrieved, in our dataset,
sketches cover only 36.7% area of the matching scene im-
age on average. In our dataset, sketches are less complex
than in (Sangkloy et al. 2022), which contain ∼2.6x times
more sketch pixels compared to our dataset1. Table 1 shows
these comparisons of CSTBIR with other existing image re-
trieval datasets (Eitz, Hays, and Alexa 2012; Yu et al. 2016;
Lin et al. 2014; Young et al. 2014; Chowdhury et al. 2022).

The CSTBIR Problem and Dataset
Given a hand-drawn sketch S, a complementary text T and a
database D = {Ii}Ni=1 of natural scene images with multiple
objects, the CSTBIR problem aims to rank the N images
according to relevance to the composite ⟨S, T ⟩ query.

Due to the lack of a suitable dataset, we curate the CST-
BIR dataset, where each sample consists of a hand-drawn
sketch, a partial complementary text description, and a rel-
evant natural scene image. The natural scene images in the
database have multiple object categories, attributes, relation-
ships, and activities. Although this dataset does not have
“difficult-to-name” objects, it is a reasonable proxy. We
also evaluate using a manually curated separate test set of
“difficult-to-name” objects.

The natural images and text descriptions are taken from
Visual Genome (Krishna et al. 2017). The dense annota-
tions in this dataset allow us to frame multiple queries re-
lated to an image, each of which pertains to a particular ob-
ject in the image. The hand-drawn sketches are taken from
the Quick, Draw! dataset (Ha and Eck 2018). Annotators
have drawn these sketches in <20 seconds; hence, they are
rough and lack the exact details as that of an image, which
aligns with the challenging real-world setting of this task.
Quick, Draw! has over 50M sketches across 345 categories.

1For fair comparison in terms of pixels covered by the sketch
strokes, we apply thinning to normalize the stroke width for both
datasets: (Sangkloy et al. 2022) and ours.

We take the intersection of the object categories between Vi-
sual Genome and Quick, Draw! to get 258 intersecting ob-
ject classes in CSTBIR. This leads to ∼108K natural im-
ages with ∼2M queries in CSTBIR. We pair each query
from Visual Genome with the corresponding object’s sketch,
sampled randomly from 10K sketches taken for each cate-
gory from Quick, Draw!

Table 2 shows basic statistics of the dataset. The dataset
has been split into train, validation, and test based on the
corresponding splits from Visual Genome for the scene im-
ages. The dataset has a total of ∼108K images and ∼562K
sketches. The training dataset consists of ∼97K images,
∼484K sketches, and ∼1.89M queries. On average, the text
sentences contain 5.4 words. The dataset also includes a val-
idation set with ∼5K images, ∼83K sketches, and ∼97K
queries. Further, it contains three test sets: Test-1K, Test-
5K, and Open-Category set. Test-1K includes 1K queries
and corresponding 1K natural scene images in the gallery.
Test-5K is a more challenging set that contains 4K queries
and 5K gallery images. All the sketch object categories in
Test-1K and Test-5K sets are present during training. How-
ever, the scene and sketch images in the test set were not
part of the training or validation set. We created the Open-
Category test set to evaluate the model on novel object cat-
egories unseen at train time, which contains 70 novel object
categories (of which 50 are “difficult-to-name”) and corre-
sponding sketches.

Figure 2 shows a few examples from the dataset. For fur-
ther data analysis, we performed part of speech tagging on
text descriptions using NLTK. We visualize these statistics
in the Appendix as word clouds for the top few adjectives
(object attribute indicating words), verbs (action indicating
words), and prepositions (position indicating words) for the
text descriptions in the CSTBIR dataset.

The Proposed STNET Model for CSTBIR
For the task of sketch and text-based image retrieval,
we introduce STNET (Sketch+Text Network), a novel
multimodal architecture. It comprises three independent
Transformer-based encoder networks based on the pre-
trained CLIP model (Radford et al. 2021). The overall ar-
chitecture of STNET is illustrated in Figure 3. Next, we de-
scribe the working and architectural details of STNET in the



following subsections.

Query (Sketch+Text) Encoding
In CSTBIR, the query consists of a text sentence and a
hand-drawn sketch. We independently encode these two in-
puts using a pretrained CLIP text encoder and a pretrained
Vision Transformer (ViT) (Dosovitskiy et al. 2021) encoder.

Given a query text sentence T , we tokenize it using a
Byte-Pair-Encoding scheme according to the learned vocab-
ulary of the text encoder as FT = [CLS, t1, t2, . . . , tn],
where each ti represents a sub-word token, and CLS is
the global pool token. Given the query sketch image S,
we use a pretrained ViT encoder which is fed the input
FS = [CLS, s1, s2, . . . , sm], where each si is the embed-
ding of an image patch. As the ViT encoder is pretrained
on the ImageNet-21K dataset (Ridnik et al. 2021), we first
train it on the sketch data for the classification task to adapt
it for the sketch domain. This trained encoder is then used
to embed the sketch input. Overall, this results into text em-
bedding hT

CLS and sketch embedding hS
CLS .

Image Encoding
To utilize the benefits of large-scale pretraining, we use the
pretrained CLIP-ViT image encoder. Similar to the ViT en-
coder in the sketch, a candidate scene image I is reshaped
to a fixed size (224 × 224) and then spatially sliced into
a 16 × 16 grid of non-overlapping image patches. Further,
these image slices are then reshaped into a sequence of em-
beddings before passing it to the ViT for further processing.

As our problem focuses on queries related to objects in
natural scenes, it would be beneficial for our model to fo-
cus on the object being queried in the scene image. To en-
able this, we would like to use the sketch input S to lo-
calize or attend to the corresponding object of interest in
the image. Specifically, as shown in Figure 3, we use the
pooled output of the sketch encoder hS

CLS to calculate dot-
product attention over the output embeddings of the image
encoder H̃I . The obtained values represent attention scores
αIS over the spatial regions of the image as well as the CLS
token. We obtain weighted values of image embeddings HI ,
which are then average pooled to get the final image embed-
ding hI

AV G. Mathematically, αIS = Softmax(H̃I × hS
CLS),

HI = αIS ⊙ H̃I and hI
AV G = 1

m

∑m
i=1 H

I
i , where hI

AV G
represents the global average pooled embedding of the im-
age encoder.

STNET Training
STNET follows multiple task-specific training objectives.

Contrastive Training (LCT ) We adopt a batch-wise con-
trastive learning strategy akin to CLIP (Radford et al. 2021)
to facilitate image retrieval. Given a batch of N paired
(query, image) samples from the train set, we aim to max-
imize the cosine similarity of the image and query embed-
dings of the N real pairs in the batch while minimizing the
cosine similarity of the embeddings of the N(N − 1) incor-
rect pairings. We use conditional sampling to ensure unique-
ness, i.e., a query does not match multiple images and vice
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Figure 3: Overview of the proposed method, STNET for the
CSTBIR problem.

versa. Particularly, we use the InfoNCE loss between hT
CLS

and hI
AV G to obtain the contrastive loss (LCT ) as done in

CLIP. Further, as our model utilizes the pretrained CLIP,
which lacks joint modeling of text, sketch, and image modal-
ities, we propose three additional training losses to be opti-
mized concomitantly with the contrastive objective.

Object Classification (LT
CLS and LI

CLS) Given that the
CSTBIR problem focuses on object-specific queries, we
propose separately predicting the object name from the text
sentence and image inputs. To this end, we train the text and
image encoders for the multi-class classification objective to
predict the object’s class from the C object categories avail-
able in the train set. Since the object’s label is not mentioned
in the text sentence or is always prominent in the image, this
objective requires the model to use the contextual informa-
tion from both modalities to predict the object class. We re-
fer to the classification losses computed using text encodings
and the image encodings as LT

CLS and LI
CLS , respectively.

Sketch-Guided Object Detection (LOD) To aid the lo-
calization of the query-relevant object while encoding the
image information, inspired by the recent literature in the
sketch-guided object detection problem (Tripathi et al. 2020;
Chowdhury et al. 2023b; Tripathi et al. 2023), we propose
the training objective of sketch-guided localization of the
object. Specifically, given the sketch-attended embeddings
HI from the image encoder, we utilize the embeddings cor-
responding to the 16×16 spatial grids. Following the imple-
mentation from YOLO (Redmon et al. 2016), we transform
the output embeddings of the ViT network to predict an out-
put of shape S×S×(5B+C), where S×S represents the im-
age grid size, each predicting B bounding boxes, and C class
probabilities. We use S = 7, B = 2, and we have C = 258
classes in our train set, so we predict a 7 × 7 × 268 out-
put tensor. Finally, we use intersection over union (IoU) to
calculate the multipart object detection (LOD) loss as done
in (Redmon et al. 2016).

Sketch Reconstruction (LSR) Similar to the object detec-
tion training objective, which facilitates the localization of
the relevant objects, we introduce the task of sketch recon-
struction using the image features HI as illustrated in Fig-



ure 3. We employ eight blocks of Convolution-BatchNorm-
ReLu as done in (Isola et al. 2017) to upsample the informa-
tion to a reconstructed sketch tensor of size 1 × 224 × 224.
Further to train the sketch-reconstruction module, we utilize
a combination of Binary Cross Entropy loss and the DICE
loss (Sudre et al. 2017) as LSR = αLBCE + βLDICE .

Our overall loss is the sum of all five losses LCT+LT
CLS+

LI
CLS + LOD + LSR.
We measure the distance between the query and the image

embedding during retrieval using cosine similarity. We pro-
vide the implementation details for STNET in the Appendix
and make code and dataset available at our project page2.

Experiments and Results
Baseline Models
We compare STNET extensively with competitive image re-
trieval baselines.
Sketch-based Image Retrieval (SBIR): SBIR is a promi-
nently studied domain in the literature. In our setup, from
our composite queries, we only take sketches and drop text
to experiment with these baselines. We choose two represen-
tative and competitive SBIR methods as our baselines: Doo-
dle2Search (Dey et al. 2019) and DeepSBIR (Yu et al. 2016).
We also create a Vision Transformer-based SBIR baseline,
viz. ViT-based Siamese Network. This network comprises
two ImageNet pre-trained ViT-based encoders for sketch and
image modalities, trained using the InfoNCE loss (Oord, Li,
and Vinyals 2018).
Text-based Image Retrieval (TBIR): These baselines per-
form retrieval using only the text part of the query while ig-
noring the sketch component. We choose the following three
modern approaches in this category: VisualBERT (Li et al.
2020a), ViLT (Kim, Son, and Kim 2021), and CLIP (Rad-
ford et al. 2021).
Composite Query-based Image Retrieval: These base-
lines perform retrieval using the sketch and text inputs. We
compare our proposed method, STNET, with the follow-
ing baseline methods: TIRG (Vo et al. 2019) and Task-
Former (Sangkloy et al. 2022), and a two-stage model. We
trained the TIRG model from scratch using our dataset. For
Taskformer, we finetuned the publicly available checkpoint
using our dataset and our reproduced code for training. We
adhered to the hyperparameter configurations outlined in
their respective papers for these models. For the two-stage
method, in the first stage, we use a ViT trained for sketch
classification to get an object name from the sketch. Next, in
the second stage, we obtain the full-text query by inserting
the predicted object name into the incomplete text and then
using pretrained CLIP for image retrieval.

Finally, we experimented with another baseline, “two-
stage (desc)”. This method’s first stage is the same as the
“two-stage”. In the second stage, rather than using the class
name, we obtain the full-text query by inserting the descrip-
tion of the predicted object into the incomplete text and then
using a pretrained CLIP model for image retrieval. The de-
scription for each of the 258 object names is chosen ran-
domly from seven different sets of descriptions annotated

2https://vl2g.github.io/projects/cstbir

Method
R@10 ↑ R@20 ↑ R@50 ↑ R@100 ↑ MdR ↓

T1K T5K T1K T5K T1K T5K T1K T5K T1K T5K

Sk
et

ch Doodle2Search 14.3 3.6 24.5 6.7 36.2 14.5 45.7 24.4 129.0 573.5
DeepSBIR 5.2 1.6 8.8 3.0 18.9 5.7 27.4 9.5 258.5 1288.0
ViT-Siamese 20.4 5.2 34.2 9.9 51.0 22.2 62.6 34.9 48.0 233.0

Te
xt

VisualBERT 23.3 7.6 35.9 15.4 40.8 27.8 54.0 40.2 46.0 246.0
ViLT 28.1 10.5 42.7 16.5 60.2 30.1 74.3 43.8 30.0 163.0
CLIP 50.6 24.2 63.1 33.7 78.8 49.1 86.7 62.5 10.0 52.0

Sk
et

ch
+T

ex
t TIRG 31.9 10.4 44.2 17.3 62.8 31.6 73.2 45.4 27.5 128.0

Taskformer 22.4 9.3 35.6 14.8 42.3 27.6 53.8 38.3 48.0 204.0
Two-stage 67.0 34.8 77.4 46.9 88.6 64.7 93.7 76.2 5.0 24.0
Two-stage (desc) 60.1 30.5 73.7 41.7 85.5 59.6 91.6 72.0 7.0 32.0
STNET (Ours) 73.7 38.7 80.6 50.0 89.4 64.6 93.5 74.5 3.0 20.5

Table 3: Image retrieval results on CSTBIR Test-1K (T1K)
and Test-5K (T5K). Higher values are preferred for R@K
(Recall@K) and lower for MdR (Median Rank).

per object name. Five of these object description sets are ob-
tained automatically, while the other two are manually an-
notated.

Automated descriptions were generated by using
ChatGPT-3.53 on Mar 14, 2023. We used the following
five prompts to obtain five different description sets: (i)
“Describe the following words with visual descriptions in
4 to 10 words.” (ii) “Describe the following words with
visual descriptions as a 15-year-old kid in 4 to 10 words.”
(iii) “Describe the following words with visual descriptions
as a 35-year-old in 4 to 10 words.” (iv) “Describe the
following words with visual descriptions as a 55-year-old
in 4 to 10 words.” (v) “Describe the following words
with visual descriptions as a non-native English speaker
in 4 to 10 words.” The human annotators were asked to
write descriptions with 4 to 10 words that included visual
attributes without mentioning the object’s name.

We use two metrics: Recall@K and Median Rank (MdR).
Recall@K is the percentage of times the ground truth image
is retrieved within the top K results across all queries in the
test set; the higher, the better. Median Rank is the median of
the rank of ground truth image in the retrieved set across all
queries in the test set; the lower, the better.

Results on Test-1K and Test-5K
Table 3 shows our main results on both test sets. Our pro-
posed method, STNET, outperforms all baseline methods.
Multiple sketch+text-based image retrieval models are bet-
ter than text-based models, which are better than sketch-
based image retrieval models. This is mainly because nei-
ther the sketches nor the incomplete text can answer the
queries accurately. Amongst sketch-based image retrieval
models, ViT-based Siamese networks perform the best.
Among text-based image retrieval models, CLIP performs
the best. STNET is better than the two-stage model (ex-
cept for R@100) because the object name may not com-
pletely cover the semantics in the sketch and, even worse,
may suffer from ambiguous object names (e.g., mouse, bat,
star, etc.).

3https://chat.openai.com/



M Query Objective R@10 R@20 R@50 R@100 MdR

1 S LCT 20.2 33.7 50.9 62.9 50.5
2 T LCT 50.6 63.1 78.8 86.7 10.0
3 T+S LCT 68.4 77.2 85.6 89.8 5.0
4 T+S LCT + LOD + LSR 69.4 80.4 85.6 90.4 5.0
5 T+S LCT + LCLS + LSR 70.4 79.6 86.2 91.1 5.0
6 T+S LCT + LCLS + LOD 71.2 79.0 87.0 93.0 4.0
7 T+S LCT + LCLS + LOD

+ LSR

73.7 80.6 89.4 93.5 3.0

Table 4: Ablation study for STNET on Test-1K set based
on query modalities and training objectives. Models (M)
1 and 2 are text-only (T) and sketch-only (S) query-based
methods, resp. Models 3-6 denote objective-based ablations.
Model 7 is our final model. (LCT : contrastive loss, LCLS :
classification loss, LOD: object-detection loss, and LSR:
sketch-reconstruction loss). Higher values are preferred for
recall and lower ones for MdR. LCLS=LT

CLS+LI
CLS .

The two-stage model (desc) is expected to avoid some of
the drawbacks of the two-stage model. However, descrip-
tions of object names are often not natural (e.g., a description
for “grass” is “green plant used for landscaping and grazing
animals”) and are still quite generic. Similarly, consider ob-
jects like boat, yacht, ship, and ferry. It is difficult to describe
these in a differentiating manner but easy to sketch. Hence,
both the two-stage model and STNET are better than the
two-stage model (desc).

Considering the other sketch+text-based image retrieval
models, TIRG (Vo et al. 2019) and Taskformer (Sangkloy
et al. 2022), our proposed model STNET performs mas-
sively better. The poor performance of TIRG is because it
does not use any pretraining for text. Also, the image pre-
training in TIRG uses ResNet-17 (He et al. 2015) (trained on
ImageNet dataset), which has been shown to lead to poorer
image embeddings compared to CLIP (Radford et al. 2021).
For Taskformer, we finetuned the publicly available check-
point using ouris because the initial checkpoint has been
trained on a dataset where the (a) images in the collection are
focused object images, unlike scene images in our dataset,
(b) sketches are elaborate and not crudely drawn, and (c)
text is self-contained and not incomplete. In other words,
the samples on our dataset, CSTBIR, are more challeng-
ing (closer to practical settings) compared to data used to
train Taskformer. We also experimented with training the
Taskformer model from scratch but did not see any improve-
ments. Finally, Taskformer does not use sketch reconstruc-
tion and object detection losses, which cater to the object-
centric nature of our dataset, as shown in Table 4.

Ablation Study
Our overall STNET model consists of several components.
To understand the importance of each component, we per-
form several ablations as shown in Table 4.

We start with just the contrastive loss (LCT ) computed
using sketch modality alone (Model 1). Model 2, which
is trained with just LCT computed using only text modal-
ity, performs better. This broadly indicates that the infor-

Method R@10↑ R@25↑ R@50↑ R@100↑ MdR↓

ViT-Siamese 6.3 8.6 14.5 23 241.0
CLIP 21.6 30.6 39.4 47.6 71.0
Two-Stage 29.0 38.2 48.8 54.8 63.0
STNET (Ours) 37.2 45.3 62.3 71.7 27.5

Table 5: Performance of image retrieval for object classes
that are unseen during training. This measures the ability of
the baselines to generalize concepts outside of the training
domain. We evaluate this on an Open-Category test set of
750 samples containing 70 unseen object classes.

mation in text is higher than in sketch, which makes sense
since our sketches are quite rough. Using text and sketch
for contrastive loss computation (Model 3) leads to further
improvements. Note that we do not perform dot-product at-
tention between sketch and image in Model 1; rather, we
employ contrastive learning between their encoders. Our
full proposed model, STNET (Model 7), consists of all
the loss functions: contrastive loss (LCT ), object classifi-
cation loss using text encodings (LT

CLS), object classifi-
cation loss using image encodings (LI

CLS), sketch-guided
object detection loss (LOD) and sketch reconstruction loss
(LSR). Models 4, 5 and 6 are trained by removing classifi-
cation (LT

CLS+LI
CLS) loss, object detection loss (LOD) and

sketch reconstruction loss (LSR) respectively from the over-
all STNET model. Broadly, removing any of the three losses
leads to degradation in performance across all metrics com-
pared to the full STNET model (Model 7). The degradation
worsens when the LCLS is removed (Model 4).

Results on Open-Category Test Set

In a real-world scenario, the objects in queries may be un-
common or entirely unfamiliar. Considering that the Visual
Genome focuses solely on common objects, we curate an
Open-Category test set featuring 70 novel object categories
under nine overarching classes. Among these, 50 are rare ob-
jects that are challenging to name but simple to illustrate, ex-
amples being Numbat, Mangosteen, Feijoa, Draw Knife, and
Gibraltar Campion. These objects and their corresponding
sketches are entirely unseen in the training set. The classes
are mentioned in the Appendix. This set includes 750 com-
posite queries and 1K gallery images.

Table 5 showcases results for this experiment, compar-
ing STNET to the top sketch-only (ViT-Siamese), text-only
(CLIP), and sketch+text (Two-Stage) baselines. Although
STNET is naturally extensible to novel object categories, the
two-stage model requires a pre-defined universe of possible
objects to select from. Hence, we first create a set of possible
object categories for the two-stage model by augmenting the
train set with the 70 additional test categories. ViT can’t ex-
tend to new classes during testing, so we use zero-shot CLIP
for sketch classification in the two-stage baseline. From Ta-
ble 5, we observe that (i) the Open-Category setting is dif-
ficult as expected. (ii) Since STNET encodes generic visual
semantics from sketches, it is more robust to this complex
setting than all the baselines.



[object]    on a slide being fed red ice cream

Bearded man on the bank of a river playing                    
                 

                  besides a man playing tabla.

Person dressed in a suit standing beside 
a    .
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Search Queries Top-5 Retrieved Results

Figure 4: Qualitative results of our STNET. We show top-5 retrieved results for the multimodal (sketch+text) queries shown in
left most column. From top to bottom, the sketch are for capybara, sitar, penny-farthing, and okapi. The ground truth image is
shown with a green frame. (Best viewed in color).

Method R@10↑ R@25↑ R@50↑ R@100↑ MdR↓

ViT-Siamese 41.5 50.3 58.6 63.1 17.0
CLIP 50.6 63.1 78.8 86.7 10.0
Two-Stage 61.4 72.5 82.8 89.3 7.0
STNET (Ours) 70.3 81.8 90.7 95.6 3.0

Table 6: Performance of image retrieval for examples with
instance-level sketches. This measures the ability of the
baselines to generalize to rich sketches with pose, size, and
shape information. We evaluate this on Test-1K (where rich
ones have replaced crude sketches).

Performance with Instance-Level Sketches
We have primarily focused on crude sketches. How does
STNET fare with detailed instance-level sketches—those
with pose, size, and shape details? Such sketches require the
retrieved image to have a matching object instance. For this
experiment, we generate rich synthetic sketches automati-
cally for each image in the Train and Test-1K datasets using
the method proposed in (Li et al. 2019). We obtain sketches
only for the part of the image covered by the relevant object
box. Table 6 shows that STNET outperforms all baselines
on this complex setting as well. As the sketch becomes more
expressive, the two-stage model, converting the sketch to a
category name, loses nuanced details, widening its gap with
STNET. More details are in the Appendix.

Qualitative Analysis
We show a few retrieval results from the CSTBIR dataset
for our model STNET in Figure 4. Our model correctly re-
trieves the ground truth image associated with each compos-

ite query and ranks several relevant images in the top re-
sults. We observe that it can even reason about certain com-
plex visual attributes associated with the queried object (e.g.,
“okapi” with striped legs). We provide more analyses in the
appendix.

Conclusion

We proposed the novel problem of multimodal query-based
retrieval on a collection of natural scene images where the
query consists of an incomplete text and an accompany-
ing rough sketch. Towards this task, we contributed a novel
dataset, CSTBIR, containing ∼2M queries and ∼103K nat-
ural scene images. Further, we also proposed a novel model,
STNET, which is trained on losses specially designed for
the CSTBIR problem: contrastive loss, object classification
loss, sketch-guided object detection loss, and sketch recon-
struction loss. STNET outperforms existing strong baselines
by significant margins. CSTBIR could be essential in mul-
tiple real-world settings. For example, searching for a prod-
uct in digital catalogs given its rough sketch and a short de-
scription. It can also aid in the search for missing people,
given their prominent features with accompanying descrip-
tions from a repository of crowd photos taken by surveil-
lance cameras.
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